Antibacterial activity of silver nanoparticle LED-synthesized using Citrus maxima peels
Abstract views: 539 / PDF downloads: 285
DOI:
https://doi.org/10.29228/ijpbp.26Keywords:
Antibacterial activity, Citrus maxima, LED irradiation, Silver nanoparticlesAbstract
Silver nanoparticles have garnered significant attention in research and applications due to their unique properties. The synthesis of these nanoparticles has aligned with the principles of green chemistry, utilizing environmentally-friendly materials and techniques. In this study, silver nanoparticles were synthesized using the Citrus maxima peel extract and blue LED irradiation. The pectin, flavonoids, and phenolic acids in the C. maxima extract acted as effective reductants and primary stabilizers for nanoparticle formation. The influence of different light-emitting diodes and irradiation time on nanoparticle synthesis was investigated. Ideal conditions for silver nanoparticle formation were observed with the assistance of blue LED irradiation for 120 min. Characterization techniques such as transmission electron microscopy, X-ray diffraction analysis, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy confirmed the successful synthesis of spherical nanoparticles with an average size of 12.2 nm. The antibacterial activity of the silver nanoparticles was evaluated against four bacterial strains: Lactobacillus fermentum, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella enterica. The nanoparticles exhibited stronger inhibitory effects against gram-negative compared to gram-positive bacteria, with half-maximal inhibitory concentrations of 9.4, 18.1, 73.3, and 88.5 pM for P. aeruginosa, L. fermentum, S. aureus, and S. enterica, respectively. These findings highlight the potential of bio-synthesized nanoparticles with small size and high antibacterial activity.
References
Al-Muhanna, M. K. A., Hileuskaya, K. S., Kulikouskaya, V. I., Kraskouski, A. N., & Agabekov, V. E. (2015). Preparation of stable sols of silver nanoparticles in aqueous pectin solutions and properties of the sols. Colloid Journal, 77(6), 677-684.
Ali, K. A., Yao, R., Wu, W., Masum, M. M. I., Luo, J., Wang, Y., Zhang, Y., An, Q., Sun, G., et al. (2020). Biosynthesis of silver nanoparticle from pomelo (Citrus maxima) and their antibacterial activity against acidovorax oryzae RS-2. Materials Research Express, 7(1), 015097.
Annadhasan, M., SankarBabu, V. R., Naresh, R., Umamaheswari, K., & Rajendiran, N. (2012). A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications. Colloids and Surfaces B: Biointerfaces, 96, 14-21.
Ardjoum, N., Shankar, S., Chibani, N., Salmieri, S., & Lacroix, M. (2021). In situ synthesis of silver nanoparticles in pectin matrix using gamma irradiation for the preparation of antibacterial pectin/silver nanoparticles composite films. Food Hydrocolloids, 121, 107000.
Austin, L. A., Mackey, M. A., Dreaden, E. C., & El-Sayed, M. A. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology, 88(7), 1391-1417.
Balachandran, Y. L., Girija, S., Selvakumar, R., Tongpim, S., Gutleb, A. C., & Suriyanarayanan, S. (2013). Differently environment stable bio-silver nanoparticles: Study on their optical enhancing and antibacterial properties. Plos One, 8(10), e77043.
Bano, N., Iqbal, D., Al Othaim, A., Kamal, M., Albadrani, H. M., Algehainy, N. A., Alyenbaawi, H., Alghofaili, F., Amir, M., et al. (2023). Antibacterial efficacy of synthesized silver nanoparticles of Microbacterium proteolyticum LA2(R) and Streptomyces rochei LA2(O) against biofilm forming meningitis causing microbes. Scientific Reports, 13(1), 4150.
Barbhuiya, R. I., Singha, P., Asaithambi, N., & Singh, S. K. (2022). Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste. Food Chemistry, 385, 132602.
Bidhendi, A. J., Chebli, Y., & Geitmann, A. (2020). Fluorescence visualization of cellulose and pectin in the primary plant cell wall. Journal of Microscopy, 278(3), 164-181.
da Silva, R. T. P., Petri, M. V., Valencia, E. Y., Camargo, P. H. C., de Torresi, S. I. C., & Spira, B. (2020). Visible light plasmon excitation of silver nanoparticles against antibiotic-resistant Pseudomonas aeruginosa. Photodiagnosis and Photodynamic Therapy, 31, 101908.
Devendiran, R. M., Chinnaiyan, S. K., Yadav, N. K., Moorthy, G. K., Ramanathan, G., Singaravelu, S., Sivagnanam, U. T., & Perumal, P. T. (2016). Green synthesis of folic acid-conjugated gold nanoparticles with pectin as reducing/stabilizing agent for cancer theranostics. RSC Advances, 6(35), 29757-29768.
Fan, Q. (2012). A new method of calculating interplanar spacing: the position-factor method. Journal of Applied Crystallography, 45(6), 1303-1308.
Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103-109.
Fonseca, M., & Prior, J. A. V. (2021). Microwave aqueous dissolution of potato starch for the synthesis of starch capped silver nanoparticles. Starch, 73(3-4), 2000205.
Guibaud, G., Tixier, N., Bouju, A., & Baudu, M. (2003). Relation between extracellular polymers' composition and its ability to complex Cd, Cu and Pb. Chemosphere, 52(10), 1701-1710.
Guzman, M., Dille, J., & Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 8(1), 37-45.
Hileuskaya, K., Ladutska, A., Kulikouskaya, V., Kraskouski, A., Novik, G., Kozerozhets, I., Kozlovskiy, A., & Agabekov, V. (2020). ‘Green’ approach for obtaining stable pectin-capped silver nanoparticles: Physico-chemical characterization and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124141.
Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534.
Huo, C., Khoshnamvand, M., Liu, P., Yuan, C. G., & Cao, W. (2019). Eco-friendly approach for biosynthesis of silver nanoparticles using Citrus maxima peel extract and their characterization, catalytic, antioxidant and antimicrobial characteristics. Materials Research Express, 6(1), 015010.
Ivanova, N. V., Trofimova, N. N., Es'kova, L. A., & Babkin, V. A. (2012). The study of the reaction of pectin-Ag(0) nanocomposites formation. International Journal of Carbohydrate Chemistry, 2012, 459410.
Kalaivani, R., Maruthupandy, M., Muneeswaran, T., Hameedha Beevi, A., Anand, M., Ramakritinan, C. M., & Kumaraguru, A. K. (2018). Synthesis of chitosan mediated silver nanoparticles (AgNPs) for potential antimicrobial applications. Frontiers in Laboratory Medicine, 2(1), 30-35.
Kamiloglu, S., Sari, G., Ozdal, T., & Capanoglu, E. (2020). Guidelines for cell viability assays. Food Frontiers, 1(3), 332-349.
Khamhaengpol, A., & Siri, S. (2016). Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae. Journal of Photochemistry and Photobiology B: Biology, 163, 337-344.
Khan, U. M., Sameen, A., Aadil, R. M., Shahid, M., Sezen, S., Zarrabi, A., Ozdemir, B., Sevindik, M., Kaplan, D. N., et al. (2021). Citrus genus and its waste utilization: A review on health-promoting activities and industrial application. Evidence-Based Complementary and Alternative Medicine, 2021, 2488804.
Košťálová, Z., Hromádková, Z., & Ebringerová, A. (2013). Structural diversity of pectins isolated from the Styrian oil-pumpkin (Cucurbita pepo var. styriaca) fruit. Carbohydrate Polymers, 93(1), 163-171.
Lara-Espinoza, C., Sanchez-Villegas, J. A., Lopez-Franco, Y., Carvajal-Millan, E., Troncoso-Rojas, R., Carvallo-Ruiz, T., & Rascon-Chu, A. (2021). Composition, physicochemical features, and covalent gelling properties of ferulated pectin extracted from three sugar beet (Beta vulgaris L.) cultivars grown under desertic conditions. Agronomy, 11(1), 40.
Le Pevelen, D. D., & Lindon, J. C. (2010). Small molecule X-ray crystallography, theory and workflow. In: Encyclopedia of spectroscopy and spectrometry, 2nd eds. In J. C. Lindon (Ed.), Small molecule X-ray crystallography, theory and workflow (pp. 2559). Oxford: Academic Press.
Lee, J. H., Lim, J. M., Velmurugan, P., Park, Y. J., Park, Y. J., Bang, K. S., & Oh, B. T. (2016). Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. Journal of Photochemistry and Photobiology B: Biology, 162, 93-99.
Li, K., Cui, S., Hu, J., Zhou, Y., & Liu, Y. (2018). Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydrate Polymers, 199, 68-74.
Liu, Y., & Huang, C. Z. (2012). One-step conjugation chemistry of DNA with highly scattered silver nanoparticles for sandwich detection of DNA. Analyst, 137(15), 3434-3436.
Methacanon, P., Krongsin, J., & Gamonpilas, C. (2014). Pomelo (Citrus maxima) pectin: Effects of extraction parameters and its properties. Food Hydrocolloids, 35, 383-391.
Mohan, S., Oluwafemi, O. S., Kalarikkal, N., & Thomas, S. (2015). Antibacterial and sensing properties of dextrose reduced starch-capped silver nanoparticles synthesised via a completely green method. Materials Today: Proceedings, 2(7), 3943-3949.
Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277.
Musino, D., Rivard, C., Landrot, G., Novales, B., Rabilloud, T., & Capron, I. (2021). Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes. Journal of Colloid and Interface Science, 584, 360-371.
Nagar, N., Jain, S., Kachhawah, P., & Devra, V. (2016). Synthesis and characterization of silver nanoparticles via green route. Korean Journal of Chemical Engineering, 33(10), 2990-2997.
Nemiwal, M., Zhang, T. C., & Kumar, D. (2021). Pectin modified metal nanoparticles and their application in property modification of biosensors. Carbohydrate Polymer Technologies and Applications, 2, 100164.
Nguyen, D. T., Le, N. P. T., & Nguyen, T. H. (2022). Synthesis of silver nanoparticles using extract of Citrus maxima peel. Can Tho University Journal of Science, 14(2), 93-98.
Nguyen, V. T. (2020). Sunlight-driven synthesis of silver nanoparticles using Pomelo peel extract and antibacterial testing. Journal of Chemistry, 2020, 6407081.
Niluxsshun, M. C. D., Masilamani, K., & Mathiventhan, U. (2021). Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities. Bioinorganic Chemistry and Applications, 2021, 6695734.
Pallavicini, P., Arciola, C. R., Bertoglio, F., Curtosi, S., Dacarro, G., D'Agostino, A., Ferrari, F., Merli, D., Milanese, C., et al. (2017). Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. Journal of Colloid and Interface Science, 498, 271-281.
Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 139(19), 4855-4861.
Pascu, B., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Nemeş, N. S., Seiman, C., Marian, E., & Micle, O. (2021). A green, simple and facile way to synthesize silver nanoparticles using soluble starch. pH studies and antimicrobial applications. Materials, 14(16), 4765.
Polinarski, M. A., Beal, A. L. B., Silva, F. E. B., Bernardi-Wenzel, J., Burin, G. R. M., de Muniz, G. I. B., & Alves, H. J. (2021). New perspectives of using chitosan, silver, and chitosan-silver nanoparticles against multidrug-resistant bacteria. Particle and Particle Systems Characterization, 38(4), 2100009.
Pozdnyakov, A. S., Emel’yanov, A. I., Kuznetsova, N. P., Ermakova, T. G., Korzhova, S. A., Khutsishvili, S. S., Vakul’skaya, T. I., & Prozorova, G. F. (2019). Synthesis and characterization of silver-containing nanocomposites based on 1-vinyl-1,2,4-triazole and acrylonitrile copolymer. Journal of Nanomaterials, 2019, 4895192.
Qiu, W. Y., Wang, Y. Y., Wang, M., & Yan, J. K. (2018). Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids and Surfaces B: Biointerfaces, 170, 692-700.
Quoc, L. P. T., Anh, L. T. L., Tien, M. V. T. K., & Trang, L. T. (2014). Optimization of the pectin extraction from Pomelo peels by oxalic acid and microwave. Banat’s Journal of Biotechnology, 5(9), 67-73.
Salvioni, L., Galbiati, E., Collico, V., Alessio, G., Avvakumova, S., Corsi, F., Tortora, P., Prosperi, D., & Colombo, M. (2017). Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. International Journal of Nanomedicine, 12, 2517-2530.
Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1), 83-96.
Stamplecoskie, K. G., & Scaiano, J. C. (2010). Light Emitting Diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 132(6), 1825-1827.
Su, D. L., Li, P. J., Ning, M., Li, G. Y., & Shan, Y. (2019). Microwave assisted green synthesis of pectin based silver nanoparticles and their antibacterial and antifungal activities. Materials Letters, 244, 35-38.
Tran, N. D. N., Bui, T. H., Nguyen, A. P., Nguyen, T. T., Nguyen, V. M., Duong, N. L., & Nguyen, T. (2022). The ability of silver-biochar green-synthesized from Citrus maxima peel to adsorb pollutant organic compounds and antibacterial activity. Green Chemistry Letters and Reviews, 15(1), 18-27.
Verma, S., Rao, B. T., Srivastava, A. P., Srivastava, D., Kaul, R., & Singh, B. (2017). A facile synthesis of broad plasmon wavelength tunable silver nanoparticles in citrate aqueous solutions by laser ablation and light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 527, 23-33.
Wani, I. A., Ganguly, A., Ahmed, J., & Ahmad, T. (2011). Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies. Materials Letters, 65(3), 520-522.
Zhang, C., Zhu, X. X., Zhang, F. P., Yang, X., Ni, L., Zhang, W., Liu, Z. B., & Zhang, Y. Y. (2020). Improving viscosity and gelling properties of leaf pectin by comparing five pectin extraction methods using green tea leaf as a model material. Food Hydrocolloids, 98, 105246.
Zhang, W. L., Zhao, X. J., Jiang, Y. Y., & Zhou, Z. Q. (2017). Citrus pectin derived silver nanoparticles and their antibacterial activity. Inorganic and Nano-Metal Chemistry, 47(1), 15-20.
Zhang, Y. M., Yuan, X., Wang, Y., & Chen, Y. (2012). One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. Journal of Materials Chemistry, 22(15), 7245-7251.
Zheng, X. L., Zhao, X. J., Guo, D. W., Tang, B., Xu, S. P., Zhao, B., Xu, W. Q., & Lombardi, J. R. (2009). Photochemical formation of silver nanodecahedra: Structural selection by the excitation wavelength. Langmuir, 25(6), 3802-3807.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Trung Nguyen Dien, Hong Nguyen Thi
This work is licensed under a Creative Commons Attribution 4.0 International License.
The papers published in the International Journal of Plant Based Pharmaceuticals are licenced under Creative Commons Attribution 4.0 International Licence (CC BY).
Accepted 2023-07-11
Published 2023-07-18