Potentilla fulgens Wall ex Sims. exerts anti-diabetic effects by inhibiting α-amylase and α-glucosidase: deeper insights through molecular docking


Abstract views: 47 / PDF downloads: 10

Authors

DOI:

https://doi.org/10.62313/ijpbp.2025.244

Keywords:

α-Amylase, α-Glucosidase, Diabetes, Docking, GC-MS/MS, Potentilla fulgens

Abstract

Potentilla fulgens Wall ex Sims., a local medicinal plant used by the Khasi tribe of Meghalaya, India, has been reported to be rich in tannins, polyphenols, triterpenoids, and flavonoids. Although several studies have been conducted on its antidiabetic and anti-oxidant properties, most reports were done with crude polar extracts. In this study, we report the inhibitory effect of the non-polar chloroform extract of P. fulgens (NPFE) on α- amylase and α- glucosidase. The extract exhibited a potent antioxidant effect comparable to the reference standard as reflected by the IC50 values in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Further, the antihyperglycemic action of NPFE was observed in alloxan-induced diabetic mice from the Intraperitoneal Glucose Tolerance Test (IPGTT). Spectral and chromatographic analysis using FTIR and GC-MS/MS showed the presence of important functional groups and bioactive compounds. In silico molecular docking of the identified bioactive compounds carried out against α-amylase and α-glucosidase provided more insights into its antihyperglycemic properties.

References

Abadie, C., Lalande, J., & Tcherkez, G. (2022). Exact mass GC‐MS analysis: protocol, database, advantages and application to plant metabolic profiling. Plant, Cell & Environment, 45, 3171–3183. https://doi.org/10.1111/pce.14407 DOI: https://doi.org/10.1111/pce.14407

Alqahtani, S. S., Makeen, H. A., Menachery, S. J., & Moni, S. S. (2020). Documentation of bioactive principles of the flower from Caralluma retrospiciens (Ehrenb) and in vitro antibacterial activity–Part B. Arabian Journal of Chemistry, 13(10), 7370-7377. https://doi.org/10.1016/j.arabjc.2020.07.023 DOI: https://doi.org/10.1016/j.arabjc.2020.07.023

American Diabetes Association. (2022). Standards of medical care in diabetes—2022 abridged for primary care providers. Clinical Diabetes, 40(1), 10-38. https://doi.org/10.2337/cd22-as01 DOI: https://doi.org/10.2337/cd22-as01

Aravinth, A., Perumal, P., Rajaram, R., Dhanasundaram, S., Narayanan, M., Maharaja, S., & Manikumar, A. (2023). Isolation and characterization of 2, 4-di-tert-butyl phenol from the brown seaweed, Dictyota ciliolata and assessment of its anti-oxidant and anticancer characteristics. Biocatalysis and Agricultural Biotechnology, 54, Article: 102933. https://doi.org/10.1016/j.bcab.2023.102933 DOI: https://doi.org/10.1016/j.bcab.2023.102933

Ayodele, P. F., Bamigbade, A., Bamigbade, O. O., Adeniyi, I. A., Tachin, E. S., Seweje, A. J., & Farohunbi, S. T. (2023). Illustrated Procedure to Perform Molecular Docking Using PyRx and Biovia Discovery Studio Visualizer: A Case Study of 10kt With Atropine. Progress in Drug Discovery & Biomedical Science, 6(1), Article: a0000424. https://doi.org/10.36877/pddbs.a0000424 DOI: https://doi.org/10.36877/pddbs.a0000424

Beutler, J. A. (2019). Natural products as a foundation for drug discovery. Current Protocols in Pharmacology, 86(1), Article: e67. https://doi.org/10.1002/0471141755.ph0911s46 DOI: https://doi.org/10.1002/cpph.67

Bharathi, A., Roopan, S. M., Vasavi, C., Munusami, P., Gayathri, G., & Gayathri, M. (2014). In Silico Molecular Docking and In Vitro Antidiabetic Studies of Dihydropyrimido [4, 5‐a] acridin‐2‐amines. BioMed Research International, 2014, Article: 971569. https://doi.org/10.1155/2014/971569 DOI: https://doi.org/10.1155/2014/971569

Björck, I., Granfeldt, Y., Liljeberg, H., Tovar, J., & Asp, N. G. (1994). Food properties affecting the digestion and absorption of carbohydrates. The American Journal of Clinical Nutrition, 59(3), 699S-705S. https://doi.org/10.1093/ajcn/59.3.699S DOI: https://doi.org/10.1093/ajcn/59.3.699S

Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., & Morelli, I. (2001). Antioxidant principles from Bauhinia tarapotensis. Journal of Natural Products, 64(7), 892-895. https://doi.org/10.1021/np0100845 DOI: https://doi.org/10.1021/np0100845

Ceriello, A. (2005). Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes, 54(1), 1-7. https://doi.org/10.2337/diabetes.54.1.1 DOI: https://doi.org/10.2337/diabetes.54.1.1

Cheng, A. Y., & Fantus, I. G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. Canadian Medical Association Journal, 172(2), 213-226. https://doi.org/10.1503/cmaj.1031414 DOI: https://doi.org/10.1503/cmaj.1031414

Choi, D., Kang, W., & Park, T. (2020). Anti-allergic and anti-inflammatory effects of undecane on mast cells and keratinocytes. Molecules, 25(7), Article: 1554. https://doi.org/10.3390/molecules25071554 DOI: https://doi.org/10.3390/molecules25071554

Corcoran, C., & Jacobs, T. F. (2023). Metformin. In C. Corcoran & T. F. Jacobs (Eds.), StatPearls: Treasure Island (FL): StatPearls Publishing.

Cordell, G. A., & Colvard, M. D. (2012). Natural products and traditional medicine: turning on a paradigm. Journal of Natural Products, 75(3), 514-525. https://doi.org/10.1021/np200803m DOI: https://doi.org/10.1021/np200803m

Deryabin, D. G., & Tolmacheva, A. A. (2015). Antibacterial and anti-quorum sensing molecular composition derived from Quercus cortex (Oak bark) extract. Molecules, 20(9), 17093-17108. https://doi.org/10.3390/molecules200917093 DOI: https://doi.org/10.3390/molecules200917093

Elya, B., Basah, K., Mun′ im, A., Yuliastuti, W., Bangun, A., & Septiana, E. K. (2012). Screening of α‐glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. BioMed Research International, 2012, Article: 281078. https://doi.org/10.1155/2012/281078 DOI: https://doi.org/10.1155/2012/281078

Erwin, E., Pusparohmana, W. R., Sari, I. P., Hairani, R., & Usman, U. (2018). GC-MS profiling and DPPH radical scavenging activity of the bark of Tampoi (Baccaurea macrocarpa). F1000Research, 7, Article: 1977. https://doi.org/10.12688/f1000research.16643.2 DOI: https://doi.org/10.12688/f1000research.16643.1

Fan, S., Chang, J., Zong, Y., Hu, G., & Jia, J. (2018). GC-MS analysis of the composition of the essential oil from Dendranthema indicum var. aromaticum using three extraction methods and two columns. Molecules, 23(3), Article: 576. https://doi.org/10.3390/molecules23030576 DOI: https://doi.org/10.3390/molecules23030576

Fatmawati, S., Shimizu, K., & Kondo, R. (2011). Ganoderol B: a potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine, 18(12), 1053-1055. https://doi.org/10.1016/j.phymed.2011.03.011 DOI: https://doi.org/10.1016/j.phymed.2011.03.011

Florentin, M., Kostapanos, M. S., & Papazafiropoulou, A. K. (2022). Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. World Journal of Diabetes, 13(2), 85-96. https://doi.org/10.4239/wjd.v13.i2.85 DOI: https://doi.org/10.4239/wjd.v13.i2.85

Garber, A., Duncan, T., Goodman, A., & Mills, D. (1997). Efficacy of metformin in patients with type 2 diabetes and renal insufficiency. Diabetes Care, 20(12), 1934-1941. https://doi.org/10.2337/diacare.20.12.1934

Guarimata, J. D., Alcívar, C., Lavecchia, M., & Poveda, A. (2023). Molecular Docking for the Development of Alternative Therapies against Leishmaniasis. Chemistry Proceedings, 14(1), Article: 82. https://doi.org/10.3390/ecsoc-27-16050 DOI: https://doi.org/10.3390/ecsoc-27-16050

Harborne, J. (1998). Phytochemical methods: a guide to modern techniques of plant analysis: Chapman and Hall.

Holman, R. R., Cull, C. A., & Turner, R. C. (1999). A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (UK Prospective Diabetes Study 44). Diabetes Care, 22(6), 960-964. https://doi.org/10.2337/diacare.22.6.960 DOI: https://doi.org/10.2337/diacare.22.6.960

Hossain, M. S., Rahman, M. S., Imon, A. R., Zaman, S., Siddiky, A. B. A., Mondal, M., Sarwar, A., Huq, T. B., Adhikary, B. C., & Begum, T. (2017). Ethnopharmacological investigations of methanolic extract of Pouzolzia zeylanica (L.) Benn. Clinical Phytoscience, 2(10), 1-10. https://doi.org/10.1186/s40816-016-0022-7 DOI: https://doi.org/10.1186/s40816-016-0022-7

Jequier, E. (1994). Carbohydrates as a source of energy. The American Journal of Clinical Nutrition, 59(3), 682S-685S. https://doi.org/10.1093/ajcn/59.3.682S DOI: https://doi.org/10.1093/ajcn/59.3.682S

Juszczak, A. M., Zovko-Končić, M., & Tomczyk, M. (2019). Recent trends in the application of chromatographic techniques in the analysis of luteolin and its derivatives. Biomolecules, 9(11), Article: 731. https://doi.org/10.3390/biom9110731 DOI: https://doi.org/10.3390/biom9110731

Kajaria, D., Tripathi, J., Tripathi, Y. B., & Tiwari, S. (2013). In-vitro α amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug—Shirishadi. Journal of Advanced Pharmaceutical Technology & Research, 4(4), 206-209. https://doi.org/10.4103/2231-4040.121415 DOI: https://doi.org/10.4103/2231-4040.121415

Karagiannis, T., Boura, P., & Tsapas, A. (2014). Safety of dipeptidyl peptidase 4 inhibitors: a perspective review. Therapeutic Advances in Drug Safety, 5(3), 138-146. https://doi.org/10.1177/2042098614523031 DOI: https://doi.org/10.1177/2042098614523031

Kariuki, D. K., Kanui, T. I., Mbugua, P. M., & Githinji, C. G. (2012). Analgesic and anti-inflammatory activities of 9-Hexacosene and Stigmasterol isolated from Mondia whytei. Phytopharmacology, 2(1), 212-223.

Kazi, A. A., & Blonde, L. (2001). Classification of diabetes mellitus. Clinics in Laboratory Medicine, 21, S81–S90. https://doi.org/10.2337/dc14-S081 DOI: https://doi.org/10.2337/dc14-S081

Kiran Kaul, K. K., Vikas Jaitak, V. J., & Kaul, V. (2011). Review on pharmaceutical properties and conservation measures of Potentilla fulgens Wall. ex Hook.-a medicinal endangered herb of higher Himalaya. Indian Journal of Natural Products and Resources, 2(3), 298-306.

Kleinberger, J. W., & Pollin, T. I. (2015). Personalized medicine in diabetes mellitus: current opportunities and future prospects. Annals of the New York Academy of Sciences, 1346(1), 45-56. https://doi.org/10.1111/nyas.12757 DOI: https://doi.org/10.1111/nyas.12757

Krovat, E., Steindl, T., & Langer, T. (2005). Recent advances in docking and scoring. Current Computer-Aided Drug Design, 1(1), 93-102. https://doi.org/10.2174/1573409052952314 DOI: https://doi.org/10.2174/1573409052952314

Lee, K., & Kim, D. (2019). In-silico molecular binding prediction for human drug targets using deep neural multi-task learning. Genes, 10(11), Article: 906. https://doi.org/10.3390/genes10110906 DOI: https://doi.org/10.3390/genes10110906

Leelananda, S., & Lindert, S. (2016). Computational methods in drug discovery. Beilstein Journal of Organic Chemistry, 12, 2694–2718. https://doi.org/10.3762/bjoc.12.267 DOI: https://doi.org/10.3762/bjoc.12.267

Li, Y., Wen, S., Kota, B. P., Peng, G., Li, G. Q., Yamahara, J., & Roufogalis, B. D. (2005). Punica granatum flower extract, a potent α-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. Journal of Ethnopharmacology, 99(2), 239-244. https://doi.org/10.1016/j.jep.2005.02.030 DOI: https://doi.org/10.1016/j.jep.2005.02.030

Loza-Mejía, M. A., Salazar, J. R., & Sánchez-Tejeda, J. F. (2018). In silico studies on compounds derived from calceolaria: Phenylethanoid glycosides as potential multitarget inhibitors for the development of pesticides. Biomolecules, 8(4), Article: 121. https://doi.org/10.3390/biom8040121 DOI: https://doi.org/10.3390/biom8040121

Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146-157. https://doi.org/10.2174/157340911795677602 DOI: https://doi.org/10.2174/157340911795677602

Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., & Devasagayam, T. P. A. (2007). Indian herbs and herbal drugs used for the treatment of diabetes. Journal of Clinical Biochemistry and Nutrition, 40(3), 163-173. https://doi.org/10.3164/jcbn.40.163 DOI: https://doi.org/10.3164/jcbn.40.163

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256 DOI: https://doi.org/10.1002/jcc.21256

Mukherjee, P. K., Maiti, K., Mukherjee, K., & Houghton, P. J. (2006). Leads from Indian medicinal plants with hypoglycemic potentials. Journal of Ethnopharmacology, 106(1), 1-28. https://doi.org/10.1016/j.jep.2006.03.021 DOI: https://doi.org/10.1016/j.jep.2006.03.021

Newman, D. J. (2022). Natural products and drug discovery. National Science Review, 13(19-20), 894-901. https://doi.org/10.1016/j.drudis.2008.07.004 DOI: https://doi.org/10.1016/j.drudis.2008.07.004

Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311-335. https://doi.org/10.1021/np200906s DOI: https://doi.org/10.1021/np200906s

Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629-661. https://doi.org/10.1021/acs.jnatprod.5b01055 DOI: https://doi.org/10.1021/acs.jnatprod.5b01055

OECD. (2001). OECD guideline for the testing of chemicals: Test No. 420: Acute oral toxicity - Fixed dose procedure.: Organisation for Economic Co-operation and Development. https://doi.org/10.1787/9789264070584-en.

Omoirri, M., Odigie, O., Gbagbeke, K., Ajegi, I., Oseyomon, J., Okafoanyali, O., & Eje, V. (2018). A Review on Ethno-pharmacology of Antidiabetic Plants. Asian Plant Research Journal, 1(1), 1-22. DOI: https://doi.org/10.9734/aprj/2018/v1i1589

Patel, M. B., & Mishra, S. M. (2012). Magnoflorine from Tinospora cordifolia stem inhibits α-glucosidase and is antiglycemic in rats. Journal of Functional Foods, 4(1), 79-86. https://doi.org/10.1016/j.jff.2011.08.002 DOI: https://doi.org/10.1016/j.jff.2011.08.002

Powers, A. C., & D’Alessio, D. (2018). Endocrine Pancreas and Pharmacotherapy of Diabetes Mellitus and Hypoglycemia. In L. Brunton, R. Hilal-Dandan, & B. KnollMann (Eds.), Goodman and Gilman's the Pharmacological Basis of Therapeutics 13th edition: McGraw-Hill Education.

Rosangkima, G., & Prasad, S. (2004). Antitumour activity of some plants from Meghalaya and Mizoram against murine ascites Dalton's lymphoma. Indian Journal of Experimental Biology, 42(10), 981-988.

Salehi, B., Ata, A., V. Anil Kumar, N., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Abdulmajid Ayatollahi, S., Valere Tsouh Fokou, P., Kobarfard, F., & Amiruddin Zakaria, Z. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), Article: 551. https://doi.org/10.3390/biom9100551 DOI: https://doi.org/10.3390/biom9100551

Sanchez-Rangel, E., & Inzucchi, S. E. (2017). Metformin: clinical use in type 2 diabetes. Diabetologia, 60, 1586-1593. https://doi.org/10.1007/s00125-017-4336-x DOI: https://doi.org/10.1007/s00125-017-4336-x

Sarker, S., & Nahar, L. (2007). Natural Product Isolation. Methods in Molecular Biology, 595, 133-156. https://doi.org/10.1007/978-1-59745-510-0_6

Satapute, P., Paidi, M. K., Kurjogi, M., & Jogaiah, S. (2019). Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environmental Pollution, 251, 555-563. https://doi.org/10.1016/j.envpol.2019.05.054 DOI: https://doi.org/10.1016/j.envpol.2019.05.054

Shai, L. J., Masoko, P., Mokgotho, M. P., Magano, S. R., Mogale, A., Boaduo, N., & Eloff, J. N. (2010). Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. South African Journal of Botany, 76(3), 465-470. https://doi.org/10.1016/j.sajb.2010.03.002 DOI: https://doi.org/10.1016/j.sajb.2010.03.002

Shalini, R., Chandrasekar, M. J. N., Nanjan, M. J., Madhunapantula, S. V., Karnik, M., Selvaraj, J., & Ganesh, G. N. K. (2023). 1-Tetracosanol isolated from the leaves of Eupatorium glandulosum, accelerates wound healing by expressing inflammatory cytokines and matrix metalloproteinase. Journal of Ethnopharmacology, 315, Article: 116654. https://doi.org/10.1016/j.jep.2023.116654 DOI: https://doi.org/10.1016/j.jep.2023.116654

Shim, Y. J., Doo, H. K., Ahn, S. Y., Kim, Y. S., Seong, J. K., Park, I. S., & Min, B. H. (2003). Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. Journal of Ethnopharmacology, 85(2-3), 283-287. https://doi.org/10.1016/S0378-8741(02)00370-7 DOI: https://doi.org/10.1016/S0378-8741(02)00370-7

Shrestha, D., Pokhrel, T., Dhakal, K., Pandey, A., Sharma, P., Sapkota, S., & Adhikari, A. (2022). α-Glucosidase and-Amylase Inhibition Study and In Silico Analysis of Mimosa pudica L. of Nepalese Origin. Current Bioactive Compounds, 18(10), 2-8. https://doi.org/10.2174/1573407218666220328133408 DOI: https://doi.org/10.2174/1573407218666220328133408

Sun, S., Tang, N., Han, K., You, J., Liu, A., Wang, Q., & Xu, Q. (2024). Antifungal activity and mechanism of 4-propylphenol against Fusarium graminearum, agent of wheat scab, and its potential application. Journal of Agricultural and Food Chemistry, 72(10), 5258-5268. https://doi.org/10.1021/acs.jafc.3c09646 DOI: https://doi.org/10.1021/acs.jafc.3c09646

Surana, K. R., Ahire, A. J., Bhawar, S. V., Jeughale, P. D., Aher, K. J., Ahire, C. G., Bagul, A. D., Chavan, M. V., Patil, D. M., & Sonawane, D. D. (2023). Catechol: Important Scafold in Medicinal Chemistry. MedicoPharmaceutica (MedicoPharm), 1(1), 47-57.

Syiem, D., Sharma, R., & Saio, V. (2009). In vitro study of the antioxidant potential of some traditionally used medicinal plants of North-East India and assessment of their total phenolic content. Pharmacologyonline, 3, 952-965.

Syiem, D., Syngai, G., Khup, P., Khongwir, B., Kharbuli, B., & Kayang, H. (2002). Hypoglycemic effects of Potentilla fulgens L. in normal and alloxan-induced diabetic mice. Journal of Ethnopharmacology, 83(1-2), 55-61. https://doi.org/10.1016/S0378-8741(02)00190-3 DOI: https://doi.org/10.1016/S0378-8741(02)00190-3

Telagari, M., & Hullatti, K. (2015). In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian Journal of Pharmacology, 47(4), 425-429. https://doi.org/10.4103/0253-7613.161270 DOI: https://doi.org/10.4103/0253-7613.161270

Tewari, N., Tiwari, V., Mishra, R., Tripathi, R., Srivastava, A., Ahmad, R., Srivastava, R., & Srivastava, B. (2003). Synthesis and bioevaluation of glycosyl ureas as α-glucosidase inhibitors and their effect on mycobacterium. Bioorganic & Medicinal Chemistry, 11(13), 2911-2922. https://doi.org/10.1016/S0968-0896(03)00214-1 DOI: https://doi.org/10.1016/S0968-0896(03)00214-1

Tomczyk, M., & Latté, K. P. (2009). Potentilla—A review of its phytochemical and pharmacological profile. Journal of Ethnopharmacology, 122(2), 184-204. https://doi.org/10.1016/j.jep.2008.12.022 DOI: https://doi.org/10.1016/j.jep.2008.12.022

Truscheit, E., Frommer, W., Junge, B., Müller, L., Schmidt, D. D., & Wingender, W. (1981). Chemistry and biochemistry of microbial α‐glucosidase inhibitors. Angewandte Chemie International Edition in English, 20(9), 744-761. https://doi.org/10.1002/anie.198107441 DOI: https://doi.org/10.1002/anie.198107441

Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., Van de Lisdonk, E. H., Rutten, G. E., & Van Weel, C. (2005). α-Glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care, 28(1), 154-163. https://doi.org/10.2337/diacare.28.1.154 DOI: https://doi.org/10.2337/diacare.28.1.154

van Dijk, J. W., Manders, R. J., Hartgens, F., Stehouwer, C. D., Praet, S. F., & van Loon, L. J. (2011). Postprandial hyperglycemia is highly prevalent throughout the day in type 2 diabetes patients. Diabetes Research and Clinical Practice, 93(1), 31-37. https://doi.org/10.1016/j.diabres.2011.03.021 DOI: https://doi.org/10.1016/j.diabres.2011.03.021

Vocadlo, D. J., & Davies, G. J. (2008). Mechanistic insights into glycosidase chemistry. Current Opinion in Chemical Biology, 12(5), 539-555. https://doi.org/10.1016/j.cbpa.2008.05.010 DOI: https://doi.org/10.1016/j.cbpa.2008.05.010

WHO. (1999). The world health report: 1999: making a difference: World Health Organization.

Yahya Al-Ghamdi, A. (2022). Phytochemical screening, and in vitro antimicrobial potential of Aerva javanica leaf extracts, collected from Shada Mountain, Al-Baha, Saudi Arabia. Novel Research in Microbiology Journal, 6(2), 1515-1529. https://doi.org/10.21608/nrmj.2022.227886 DOI: https://doi.org/10.21608/nrmj.2022.227886

Zhang, Q., Xiao, X., Zheng, J., Li, M., Yu, M., Ping, F., Wang, T., & Wang, X. (2019). Vildagliptin, a dipeptidyl peptidase-4 inhibitor, attenuated endothelial dysfunction through miRNAs in diabetic rats. Archives of Medical Science, 17(5), 1378-1387. https://doi.org/10.5114/aoms.2019.86609 DOI: https://doi.org/10.5114/aoms.2019.86609

Zhou, Y., Cao, F., Luo, F., & Lin, Q. (2022). Octacosanol and health benefits: Biological functions and mechanisms of action. Food Bioscience, 47, Article: 101632. https://doi.org/10.1016/j.fbio.2022.101632 DOI: https://doi.org/10.1016/j.fbio.2022.101632

Downloads

Published

01.01.2025

How to Cite

Rai, A. K., Pakyntein, C. L., Nongrum, S., Thabah, D., Sunn, S. E., & Syiem, D. (2025). Potentilla fulgens Wall ex Sims. exerts anti-diabetic effects by inhibiting α-amylase and α-glucosidase: deeper insights through molecular docking. International Journal of Plant Based Pharmaceuticals, 5(1), 1–15. https://doi.org/10.62313/ijpbp.2025.244

Issue

Section

Research Articles
Received 2024-09-27
Accepted 2024-12-28
Published 2025-01-01