Anti-inflammatory and antioxidant activities of ethylacetate fraction of Sida linifolia L. (Malvaceae)
Abstract views: 516 / PDF downloads: 269
DOI:
https://doi.org/10.29228/ijpbp.33Keywords:
Sida linifolia, NSAIDs, Anti-inflammation, Antioxidants, Anti-malaria, PhytochemicalsAbstract
Sida linifolia L., a known weed found in West Africa and other parts of the world, is being used in African traditional medicine for many purposes, including the relief of uncomfortable teething, and the prevention of malaria. This study aimed to fractionate the crude extract of S. linifolia and determine the anti-inflammatory, and antioxidant properties of the most potent fraction. In the examination of anti-inflammatory compounds, in vitro tests for platelet aggregation, albumin denaturation, protease, and phospholipase A2 were utilized. To assess the in vivo anti-inflammatory effects, rat paw edema was induced with carrageenan and egg albumin. The total antioxidant capacity (TAC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing power (FRAP), and nitric oxide (NO) assays were used in the in vitro antioxidant assessment. The result of the phytochemical screening revealed that there were varying concentrations of terpenoids, saponins, steroids, alkaloids, flavonoids, tannins, and other phenols. The ethylacetate leaf fraction of S. linifolia EALFSL displayed robust, concentration-dependent anti-inflammatory effects by significantly inhibiting hypotonicity- and heat-induced hemolysis, platelet aggregation, protein denaturation, protease activity, and phospholipase A2 activity, which were comparable to those of the reference drugs (aspirin/prednisolone). In vivo studies also revealed that EALFSL was able, at different doses, to inhibit the progress of carrageenan-induced rat paw edema and egg albumin models. Though it was less active than the butylated hydroxytoluene BHT (0.30 mg/ml), ascorbic acid (0.32-0.50 mg/ml), and gallic acid (0.47 mg/ml), the EALFSL fraction's IC50 values ranged from 0.93 to 1.20 mg/ml. The results demonstrated that EALFSL has significant concentration-dependent antioxidant activity. These suggest that the ethylacetate leaf fraction of S. linifolia possesses anti-inflammatory and antioxidant effects.
References
Abdulkhaleq, L., Assi, M., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y., & Hezmee, M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. Veterinary World, 11(5), 627-635.
Akindele, A. J., Oladimeji-Salami, J. A., & Usuwah, B. A. (2015). Antinociceptive and anti-inflammatory activities of Telfairia occidentalis hydroethanolic leaf extract (Cucurbitaceae). Journal of Medicinal Food, 18(10), 1157-1163.
Akubue, P., Mittal, G., & Aguwa, C. (1983). Preliminary pharmacological study of some Nigerian medicinal plants. Journal of Ethnopharmacology, 8(1), 53-63.
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.
Ammendolia, D. A., Bement, W. M., & Brumell, J. H. (2021). Plasma membrane integrity: implications for health and disease. BMC Biology, 19, 71.
Anosike, C. A., Obidoa, O., & Ezeanyika, L. U. (2012). The anti—inflammatory activity of garden egg (Solanum aethiopicum) on egg albumin—induced oedema and granuloma tissue formation in rats. Asian Pacific Journal of Tropical Medicine, 5(1), 62-66.
Barbosa-Filho, J. M., Piuvezam, M. R., Moura, M. D., Silva, M. S., Lima, K. V. B., da Cunha, E. V. L., Fechine, I. M., & Takemura, O. S. (2006). Anti-inflammatory activity of alkaloids: A twenty-century review. Revista Brasileira de Farmacognosia, 16, 109-139.
Bermúdez-Humarán, L. G., Motta, J. P., Aubry, C., Kharrat, P., Rous-Martin, L., Sallenave, J. M., Deraison, C., Vergnolle, N., & Langella, P. (2015). Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microbial Cell Factories, 14, 26.
Born, G. V. R., & Cross, M. O. J. (1963). The aggregation of blood platelets. The Journal of Physiology, 168(1), 178-195.
Burkill, H. M. (1994). The useful plants of west tropical Africa. Volume 2: Families EI: Royal Botanic Gardens, Kew.
Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204-7218.
Chukwuma, I. F., Apeh, V. O., Nwora, F., Nkwocha, C. C., Mba, S. E., & Ossai, E. C. (2023). Phytochemical profiling and antioxidative potential of phenolic-rich extract of Cola acuminata nuts. Biointerface Research in Applied Chemistry, 13(1), 29.
Coutinho, A. E., & Chapman, K. E. (2011). The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and Cellular Endocrinology, 335(1), 2-13.
da Silva, M. G. C., Hort, M. A., Hädrich, G., Bosco, L. D., Vaz, G. R., da Silva, M. M. A., Tavella, R. A., Badiale-Furlong, E., da Silva Júnior, F. M. R., et al. (2022). Anti-inflammatory and Antioxidant Effects of the Microalga Pediastrum boryanum in Carrageenan-Induced Rat Paw Edema. Brazilian Archives of Biology and Technology, 64, 1-12.
Dias, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2(2), 303-336.
Dinda, B., Das, N., Dinda, S., Dinda, M., & SilSarma, I. (2015). The genus Sida L.–A traditional medicine: Its ethnopharmacological, phytochemical and pharmacological data for commercial exploitation in herbal drugs industry. Journal of Ethnopharmacology, 176, 135-176.
Enechi, O., Okeke, E., Abonyi, U., Nwankwo, N., Ndimele, U., & Benneth, M. (2019). Evaluation of in vitro anti-inflammatory and antioxidant potentials of methanol leaf extract of Fagara zanthoxyloides. Indo American Journal of Pharmaceutical Sciences, 6(8), 14365-14371.
Enechi, O. C., Okeke, E. S., Nwankwo, N. E., Nweze, J. E., Obilor, C. P., Okoye, C. I., & Awoh, O. E. (2020). Membrane Stabilization, Albumin Denaturation, Protease Inhibition, and Antioxidant Activity as Possible Mechanisms for the Anti-Inflammatory Effects of Flavonoid-Rich Extract of Peltophorum pterocarpum (DC.) K. Heyne (FREPP) Stem Bark. Tropical Journal of Natural Product Research, 4(10), 812-816.
Farooq, S., Shaheen, G., Asif, H. M., Aslam, M. R., Zahid, R., Rajpoot, S. R., Jabbar, S., & Zafar, F. (2022). Preliminary phytochemical analysis: In-Vitro comparative evaluation of anti-arthritic and anti-inflammatory potential of some traditionally used medicinal plants. Dose-Response, 20(1), 15593258211069720.
Gandhidasan, R., Thamaraichelvan, A., & Baburaj, S. (1991). Anti inflammatory action of Lannea coromandelica by HRBC membrane stabilization. Fitoterapia, 62(1), 81-83.
Georgewill, O., & Georgewill, U. (2010). Evaluation of the anti-inflammatory activity of extract of Vernonia amygdalina. Asian Pacific Journal of Tropical Medicine, 3(2), 150-151.
Georgewill, O., Georgewill, U., & Nwankwoala, R. (2010). Anti-inflammatory effects of Morninga oleifera lam extract in rats. Asian Pacific Journal of Tropical Medicine, 3(2), 133-135.
Harborne, A. (1998). Phytochemical methods a guide to modern techniques of plant analysis: Springer Dordrecht.
Hwang, I. K., Kim, D. W., Park, J. H., Lim, S. S., Yoo, K. Y., Kwon, D. Y., Kim, D. W., Moon, W. K., & Won, M. H. (2009). Effects of grape seed extract and its ethylacetate/ethanol fraction on blood glucose levels in a model of type 2 diabetes. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(8), 1182-1185.
Kokwaro, J. O. (2009). Medicinal plants of east Africa: University of Nairobi Press.
Laveti, D., Kumar, M., Hemalatha, R., Sistla, R., Gm Naidu, V., Talla, V., Verma, V., Kaur, N., & Nagpal, R. (2013). Anti-inflammatory treatments for chronic diseases: a review. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued), 12(5), 349-361.
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., et al. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10), 1374.
Liyana-Pathirana, C. M., & Shahidi, F. (2005). Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. Journal of Agricultural and Food Chemistry, 53(7), 2433-2440.
Marcocci, L., Maguire, J. J., Droylefaix, M. T., & Packer, L. (1994). The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochemical and Biophysical Research Communications, 201(2), 748-755.
Marcum, Z. A., & Hanlon, J. T. (2010). Recognizing the risks of chronic nonsteroidal anti-inflammatory drug use in older adults. The Annals of Long-Term Care: The Official Journal of the American Medical Directors Association, 18(9), 24-27.
Mendez-Encinas, M. A., Valencia, D., Ortega-García, J., Carvajal-Millan, E., Díaz-Ríos, J. C., Mendez-Pfeiffer, P., Soto-Bracamontes, C. M., Garibay-Escobar, A., Alday, E., et al. (2023). Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules, 28(11), 4496.
Mintah, S. O., Asafo-Agyei, T., Archer, M. A., Junior, P. A. A., Boamah, D., Kumadoh, D., Appiah, A., Ocloo, A., Boakye, Y. D., et al. (2019). Medicinal plants for treatment of prevalent diseases. In S. Perveen & A. Al-Taweel (Eds.), Pharmacognosy-Medicinal Plants (pp. 322): Intechopen.
Mizushima, Y., & Kobayashi, M. (1968). Interaction of anti‐inflammatory drugs with serum proteins, especially with some biologically active proteins. Journal of Pharmacy and Pharmacology, 20(3), 169-173.
Neuwinger, H. D. (2000). African traditional medicine: a dictionary of plant use and applications. With supplement: search system for diseases: Medpharm Scientific Publishers.
Nwankwo, N. E., Ezeako, E. C., Nworah, F. N., Ogara, A. L., Oka, S. A., Aham, E. C., Joshua, P. E., Nwiloh, B. I., Ezike, T. C., et al. (2023a). Bioactive compounds, anti-inflammatory, anti-nociceptive and antioxidant potentials of ethanolic leaf fraction of Sida linifolia L.(Malvaceae). Arabian Journal of Chemistry, 16(1), 104398.
Nwankwo, N. E., Okeke, E. S., Nworah, F. N., & Ezeako, E. C. (2023b). Phytochemical composition and potential anti-inflammatory and antioxidant mechanisms of leaf extracts of Sida linifolia L.(Malvaceae). Journal of Herbal Medicine, 38, 100630.
Odoh, U., & Ene, C. (2020). Phytochemical studies and investigation on the anti-inflammatory activity of Detarium microcarpum Guill (Fabaceae). World Journal of Pharmaceutical Research, 9(7), 38-51.
Okokon, J. E., & Nwafor, P. A. (2010). Antiinflammatory, analgesic and antipyretic activities of ethanolic root extract of Croton zambesicus. Pakistan Journal of Pharmaceutical Sciences, 23(4), 385-392.
Okoli, C. O., Akah, P. A., Onuoha, N. J., Okoye, T. C., Nwoye, A. C., & Nworu, C. S. (2008). Acanthus montanus: An experimental evaluation of the antimicrobial, anti-inflammatory and immunological properties of a traditional remedy for furuncles. BMC Complementary and Alternative Medicine, 8, 27.
Parvin, M. S., Das, N., Jahan, N., Akhter, M. A., Nahar, L., & Islam, M. E. (2015). Evaluation of in vitro anti-inflammatory and antibacterial potential of Crescentia cujete leaves and stem bark. BMC Research Notes, 8, 412.
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341.
Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(5), 986-1000.
Saensouka, P., Saensoukb, S., & Pasornb, P. (2016). Sida linifolia (Malvaceae), a new record for Thailand. Journal of Japanese Botany, 91(5), 295-297.
Sahreen, S., Khan, M. R., & Khan, R. A. (2014). Comprehensive assessment of phenolics and antiradical potential of Rumex hastatus D. Don. roots. BMC Complementary and Alternative Medicine, 14, 47.
Sakat, S., Juvekar, A. R., & Gambhire, M. N. (2010). In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. International Journal of Pharmacy and Pharmaceutical Sciences, 2(1), 146-155.
Samarth, R. M., Samarth, M., & Matsumoto, Y. (2017). Medicinally important aromatic plants with radioprotective activity. Future Science OA, 3(4), FSO247.
Sarveswaran, R., Jayasuriya, W., & Suresh, T. (2017). In vitro assays to investigate the anti-inflammatory activity of herbal extracts a review. Scholar Bank (Digital Repository).
Sofowora, A., Ogunbodede, E., & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10(5), 210-229.
Trease, G. E., & Evans, W. C. (1985). Pharmacognsy, Eleventh edition. In Brailliar Tiridel Can (pp. 135-203): Cassell and Collier Macmillan Publishers Ltd.
Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93.
Umapathy, E., Ndebia, E., Meeme, A., Adam, B., Menziwa, P., Nkeh-Chungag, B., & Iputo, J. (2010). An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. Journal of Medicinal Plants Research, 4(9), 789-795.
Vane, J. (1971). A mechanism of action for aspirin-like drugs: the inhibition of prostaglandin synthesis. Nature, 231, 232-235.
Winter, C. A., Risley, E. A., & Nuss, G. W. (1962). Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine, 111(3), 544-547.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nicodemus Emeka Nwankwo, Emmanuel Chigozie Aham, Emmanuel Henry Ezenabor, Diana-Mary Ginika Chidozie
This work is licensed under a Creative Commons Attribution 4.0 International License.
The papers published in the International Journal of Plant Based Pharmaceuticals are licenced under Creative Commons Attribution 4.0 International Licence (CC BY).
Accepted 2023-09-29
Published 2023-10-02