Effect of Nopalea cochenillifera (L.) Salm-Dyck cladodes flour on glucose levels in streptozotocin-induced diabetic CD-1 mice
Abstract views: 343 / PDF downloads: 203
DOI:
https://doi.org/10.29228/ijpbp.34Keywords:
Cactus, Nopalea cochenillifera (L.) Salm-Dyck, Diabetes, Bioactive compounds, Diabetic miceAbstract
Nopalea cochenillifera (L.) Salm-Dyck is a cactus species native to Mexico, now widely distributed in the West Indies and tropical America. It is a species not usually consumed as food, but due to its composition of bioactive compounds, it could be used to treat diabetes. The present study aimed to evaluate the effect of N. cochenillifera cladode flour on glucose levels in streptozotocin-induced diabetic CD-1 mice. The flour obtained from cladodes absorbed glucose proportionally to the glucose concentration, and it was observed that the administration of flour (10.5 mg/kg body) decreased glucose levels in diabetic mice compared to the control group. This preclinical study demonstrates that N. cochenillifera flour could be used to improve glucose homeostasis in type 2 diabetes.
References
Ahad, A., Raish, M., Bin Jardan, Y. A., Alam, M. A., Al-Mohizea, A. M., & Al-Jenoobi, F. I. (2020). Effect of Hibiscus sabdariffa and Zingiber officinale on the antihypertensive activity and pharmacokinetic of losartan in hypertensive rats. Xenobiotica, 50(7), 847-857.
Andrade-Cetto, A., & Wiedenfeld, H. (2011). Anti-hyperglycemic effect of Opuntia streptacantha Lem. Journal of Ethnopharmacology, 133(2), 940-943.
Betanzos-Cabrera, G., Guerrero-Solano, J., Martínez-Pérez, M., Calderón-Ramos, Z., Belefant-Miller, H., & Cancino-Diaz, J. C. (2011). Pomegranate juice increases levels of paraoxonase1 (PON1) expression and enzymatic activity in streptozotocin-induced diabetic mice fed with a high-fat diet. Food Research International, 44(5), 1381-1385.
Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Bärnighausen, T., Davies, J., & Vollmer, S. (2018). Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care, 41(5), 963-970.
Cardoso, D. B., de Carvalho, F. F. R., de Medeiros, G. R., Guim, A., Cabral, A. M. D., Véras, R. M. L., dos Santos, K. C., Dantas, L. C. N., & de Oliveira Nascimento, A. G. (2019). Levels of inclusion of spineless cactus (Nopalea cochenillifera Salm Dyck) in the diet of lambs. Animal Feed Science and Technology, 247, 23-31.
Chatterjee, S., Khunti, K., & Davies, M. J. (2017). Type 2 diabetes. The Lancet, 389(10085), 2239-2251.
Contreras-Padilla, M., Perez-Torrero, E., Hernández-Urbiola, M. I., Hernández-Quevedo, G., del Real, A., Rivera-Muñoz, E. M., & Rodríguez-García, M. E. (2011). Evaluation of oxalates and calcium in nopal pads (Opuntia ficus-indica var. redonda) at different maturity stages. Journal of Food Composition and Analysis, 24(1), 38-43.
da Silva, A. P. G., de Souza, C. C. E., Ribeiro, J. E. S., dos Santos, M. C. G., de Souza Pontes, A. L., & Madruga, M. S. (2015). Características físicas, químicas e bromatológicas de palma gigante (Opuntia ficus-indica) e miúda (Nopalea cochenillifera) oriundas do estado da Paraíba. Revista Brasileira de Tecnologia Agroindustrial, 9(2), 1810-1820.
Estrada-Luna, D., Martínez-Hinojosa, E., Cancino-Diaz, J., Belefant-Miller, H., López-Rodríguez, G., & Betanzos-Cabrera, G. (2018). Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet. European Journal of Nutrition, 57, 383-389.
Fabela-Illescas, H. E., Ávila-Domínguez, R., Hernández-Pacheco, A., Ariza Ortega, J. A., & Betanzos-Cabrera, G. (2015). Efecto de una bebida a base de nopal (Nopalea cochenillifera (l) Salm-dyck) en pacientes de una población rural de Hidalgo, México: ensayo clínico piloto. Nutrición Hospitalaria, 32(6), 2710-2714.
Fabela-Illescas, H. E., Castro-Mendoza, M. P., Montalvo-González, E., Anaya-Esparza, L. M., Vargas-Torres, A., Betanzos-Cabrera, G., & Hernandez-Uribe, J. P. (2022). Identificación de compuestos bioactivos y características fisicoquímicas de la harina de cladodios de Nopalea cochenillifera (L.) Salm-Dyck. Biotecnia, 24(1), 46-54.
Fernandes, A., Mateus, N., & de Freitas, V. (2023). Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods, 12(5), 1052.
Hernández-Ávila, M., Gutiérrez, J. P., & Reynoso-Noverón, N. (2013). Diabetes mellitus en México: El estado de la epidemia. Salud Pública de México, 55, 129-136.
Leem, K. H., Kim, M. G., Hahm, Y. T., & Kim, H. K. (2016). Hypoglycemic effect of Opuntia ficus-indica var. saboten is due to enhanced peripheral glucose uptake through activation of AMPK/p38 MAPK pathway. Nutrients, 8(12), 800.
Lim, T. K. (2012). Edible medicinal and non-medicinal plants: Springer.
Magaña-Cerino, J. M., Guzmán, T. J., Soto-Luna, I. C., Betanzos-Cabrera, G., & Gurrola-Díaz, C. M. (2022). Cladodes from Nopalea cochenillifera (L.) Salm-Dyck (Cactaceae) attenuate postprandial glycaemia without markedly influencing α-glucosidase activity. Natural Product Research, 36(4), 1105-1108.
Moussa-Ayoub, T. E., Abd El-Hady, E. S. A., Omran, H. T., El-Samahy, S. K., Kroh, L. W., & Rohn, S. (2014). Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica. Food Research International, 64, 864-872.
Ong, K. W., Hsu, A., & Tan, B. K. H. (2012). Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PloS One, 7(3), e32718.
Peerajit, P., Chiewchan, N., & Devahastin, S. (2012). Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chemistry, 132(4), 1891-1898.
Rodríguez-García, M., de Lira, C., Hernández-Becerra, E., Cornejo-Villegas, M., Palacios-Fonseca, A., Rojas-Molina, I., Reynoso, R., Quintero, L., Del-Real, A., et al. (2007). Physicochemical characterization of nopal pads (Opuntia ficus indica) and dry vacuum nopal powders as a function of the maturation. Plant Foods for Human Nutrition, 62, 107-112.
Romo-Araiza, A., Ríos-Hoyo, A., Ibarra, A., Hernández-Ortega, M., Gutiérrez-Salmeán, G., & Meneses-Mayo, M. (2018). Effect of a formulation with nopal (Opuntia ficus-indica), amaranth (Amaranthus cruentus) and mushroom (Pleurotus ostreatus) in a murine model of diet-induced cardiometabolic disruptions. Insights in Nutrition and Metabolism, 2, 5-13.
Sánchez-Tapia, M., Aguilar-López, M., Pérez-Cruz, C., Pichardo-Ontiveros, E., Wang, M., Donovan, S. M., Tovar, A. R., & Torres, N. (2017). Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Scientific Reports, 7(1), 4716.
Tavares, E. D. A., Guerra, G. C. B., da Costa Melo, N. M., Dantas-Medeiros, R., da Silva, E. C. S., Andrade, A. W. L., de Souza Araújo, D. F., da Silva, V. C., Zanatta, A. C., et al. (2023). Toxicity and Anti-Inflammatory Activity of Phenolic-Rich Extract from Nopalea cochenillifera (Cactaceae): A Preclinical Study on the Prevention of Inflammatory Bowel Diseases. Plants, 12(3), 594.
Villaseñor, I. M., & Lamadrid, M. R. A. (2006). Comparative anti-hyperglycemic potentials of medicinal plants. Journal of Ethnopharmacology, 104(1-2), 129-131.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Héctor Enrique Fabela-Illescas, Pablo Hernández-Uribe, Helen Belefant-Miller, Mónica Alonso de Jesús, Gabriel Betanzos-Cabrera
This work is licensed under a Creative Commons Attribution 4.0 International License.
The papers published in the International Journal of Plant Based Pharmaceuticals are licenced under Creative Commons Attribution 4.0 International Licence (CC BY).
Accepted 2023-10-08
Published 2023-10-14