Bioactive chemlali olive derivatives and compounds useful for pharmaceutical purposes: A review

Abstract views: 342 / PDF downloads: 131




Chemlali variety, Olive derivatives, Extraction, Chemical composition


Several articles in the literature deal with and analyze components extracted from the olive tree, but these researches are mainly focused on the quality of olive oil and more precisely its volatile components, often related to their antioxidant properties, which denies other derivatives of the olive tree that are traditional sources of several healing broths. A thorough comparison of the richness of the different derivatives as well as the methods of extraction and identification will help to provide a useful decision-making tool. Olive tree derivatives were extracted in different ways to better understand the chemical composition of the Chemlali olive tree variety as well as to evaluate the efficiency of advanced extraction procedures. A comparison through the IC50 of the Chemlali variety with other olive cultivars was performed. It shows the richness of this variety in polyphenols. In addition, we present here a qualitative and quantitative table of basic chemicals for pharmacological use derived from olive oil, leaf, and bark that have been previously described in the literature. Diverse types and concentrations of phenolic compounds—an important class of natural antioxidants—can be found in different components of olives, including leaves, fruit, pits, seeds, bark, and paste. However, comprehensive studies are deficient in comparing the quantities extracted from these different sources. Indeed, this review attempt shows the diversity of Chemlali through the use of high-value-added molecules (VAT), which can be categorized as diterpenes such as tyrosol and phytol, triterpenes such as squalene, as well as cinnamates.


Abaza, L., Talorete, T. P., Yamada, P., Kurita, Y., Zarrouk, M., & Isoda, H. (2007). Induction of growth inhibition and differentiation of human leukemia HL-60 cells by a Tunisian gerboui olive leaf extract. Bioscience, Biotechnology, and Biochemistry, 71(5), 1306-1312.

Abdelhamid, S., Gouta, H., Gharsallaoui, M., Ghrab, M., Kwon, Y., Yoon, I. S., & Byun, M. O. (2013). A review on current status of olive and olive oil production in Tunisia. Journal of the Korean Society of International Agriculture, 25, 351-357.

Akgün, N. A. (2011). Separation of squalene from olive oil deodorizer distillate using supercritical fluids. European Journal of Lipid Science and Technology, 113(12), 1558-1565.

Angeloni, C., Malaguti, M., Barbalace, M. C., & Hrelia, S. (2017). Bioactivity of olive oil phenols in neuroprotection. International Journal of Molecular Sciences, 18(11), 2230.

Angerosa, F., d'Alessandro, N., Konstantinou, P., & Di Giacinto, L. (1995). GC-MS evaluation of phenolic compounds in virgin olive oil. Journal of Agricultural and Food Chemistry, 43(7), 1802-1807.

Aresta, A., Damascelli, A., de Vietro, N., & Zambonin, C. (2020). Measurement of squalene in olive oil by fractional crystallization or headspace solid phase microextraction coupled with gas chromatography. International Journal of Food Properties, 23(1), 1845-1853.

Belaqziz, M., Tan, S. P., El-Abbassi, A., Kiai, H., Hafidi, A., O’Donovan, O., & McLoughlin, P. (2017). Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters. PLoS One, 12(9), e0182622.

Ben Mansour, A., Porter, E. A., Kite, G. C., Simmonds, M. S., Abdelhedi, R., & Bouaziz, M. (2015). Phenolic profile characterization of Chemlali olive stones by liquid chromatography-ion trap mass spectrometry. Journal of Agricultural and Food Chemistry, 63(7), 1990-1995.

Benavente-Garcia, O., Castillo, J., Lorente, J., Ortuño, A., & del Rio, J. (2000). Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry, 68(4), 457-462.

Bhatia, S., Wellington, G., Cocchiara, J., Lalko, J., Letizia, C., & Api, A. (2007). Fragrance material review on cinnamyl cinnamate. Food and Chemical Toxicology, 45(1), S66-S69.

Bisignano, G., Tomaino, A., Cascio, R. L., Crisafi, G., Uccella, N., & Saija, A. (1999). On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. Journal of Pharmacy and Pharmacology, 51(8), 971-974.

Bouallagui, Z., Han, J., Isoda, H., & Sayadi, S. (2011). Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food and Chemical Toxicology, 49(1), 179-184.

Bouaziz, M., Grayer, R. J., Simmonds, M. S., Damak, M., & Sayadi, S. (2005). Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar Chemlali growing in Tunisia. Journal of Agricultural and Food Chemistry, 53(2), 236-241.

Brahmi, F., Flamini, G., Issaoui, M., Dhibi, M., Dabbou, S., Mastouri, M., & Hammami, M. (2012). Chemical composition and biological activities of volatile fractions from three Tunisian cultivars of olive leaves. Medicinal Chemistry Research, 21, 2863-2872.

Brenes-Balbuena, M., Garcia-Garcia, P., & Garrido-Fernandez, A. (1992). Phenolic compounds related to the black color formed during the processing of ripe olives. Journal of Agricultural and Food Chemistry, 40(7), 1192-1196.

Brito, C., Dinis, L. T., Moutinho-Pereira, J., & Correia, C. M. (2019). Drought stress effects and olive tree acclimation under a changing climate. Plants, 8(7), 232.

Calabriso, N., Scoditti, E., Pellegrino, M., & Carluccio, M. A. (2015). Olive oil. In V. Preedy & R. Watson (Eds.), The Mediterranean Diet (pp. 135-142): Elsevier.

Capasso, R., Evidente, A., & Scognamiglio, F. (1992). A simple thin layer chromatographic method to detect the main polyphenols occurring in olive oil vegetation waters. Phytochemical Analysis, 3(6), 270-275.

Cinquanta, L., Esti, M., & Notte, E. L. (1997). Evolution of phenolic compounds in virgin olive oil during storage. Journal of the American Oil Chemists' Society, 74, 1259-1264.

Clodoveo, M. L., Crupi, P., Annunziato, A., & Corbo, F. (2021). Innovative extraction technologies for development of functional ingredients based on polyphenols from olive leaves. Foods, 11(1), 103.

da Silva, J. C. E. (2010). Chemometric classification of cultivars of olives: Perspectives on Portuguese olives. In V. Preedy & R. Watson (Eds.), Olives and olive oil in health and disease prevention (pp. 33-42): Elsevier.

da Silva, M., Freitas, A. M. C., Cabrita, M., & Garcia, R. (2012). Olive oil composition: Volatile compounds. In D. Boskou (Ed.), Olive Oil-Constituents, Quality, Health Properties and Bioconversions (pp. 17-46): IntechOpen.

Dauber, C., Carreras, T., González, L., Gámbaro, A., Valdés, A., Ibanez, E., & Vieitez, I. (2022). Characterization and incorporation of extracts from olive leaves obtained through maceration and supercritical extraction in Canola oil: Oxidative stability evaluation. LWT, 160, 113274.

de la Puerta, R. O., Domı́nguez, M. E. M. N., Ruı́z-Gutı́errez, V., Flavill, J. A., & Hoult, J. R. S. (2001). Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sciences, 69(10), 1213-1222.

De Leonardis, A., Aretini, A., Alfano, G., Macciola, V., & Ranalli, G. (2008). Isolation of a hydroxytyrosol-rich extract from olive leaves (Olea europaea L.) and evaluation of its antioxidant properties and bioactivity. European Food Research and Technology, 226, 653-659.

de Melo, M. M., Oliveira, E. L., Silvestre, A. J., & Silva, C. M. (2012). Supercritical fluid extraction of triterpenic acids from Eucalyptus globulus bark. The Journal of Supercritical Fluids, 70, 137-145.

Debbabi, O. S., Amar, F. B., Rahmani, S. M., Taranto, F., Montemurro, C., & Miazzi, M. M. (2022). The Status of Genetic Resources and Olive Breeding in Tunisia. Plants, 11(13), 1759.

Deng, J., Xu, Z., Xiang, C., Liu, J., Zhou, L., Li, T., Yang, Z., & Ding, C. (2017). Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrasonics Sonochemistry, 37, 328-334.

Dierkes, G., Krieger, S., Dück, R., Bongartz, A., Schmitz, O. J., & Hayen, H. (2012). High-performance liquid chromatography–mass spectrometry profiling of phenolic compounds for evaluation of olive oil bitterness and pungency. Journal of Agricultural and Food Chemistry, 60(31), 7597-7606.

El, S. N., & Karakaya, S. (2009). Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutrition Reviews, 67(11), 632-638.

Erbay, Z., & Icier, F. (2010). The importance and potential uses of olive leaves. Food Reviews International, 26(4), 319-334.

Essafi, H., Trabelsi, N., Benincasa, C., Tamaalli, A., Perri, E., & Zarrouk, M. (2019). Phytochemical profile, antioxidant and antiproliferative activities of olive leaf extracts from autochthonous Tunisian cultivars. Acta Alimentaria, 48(3), 384-390.

Fornari, T., Vicente, G., Vázquez, E., García-Risco, M. R., & Reglero, G. (2012). Isolation of essential oil from different plants and herbs by supercritical fluid extraction. Journal of Chromatography A, 1250, 34-48.

García-Martínez, O., De Luna-Bertos, E., Ramos-Torrecillas, J., Ruiz, C., Milia, E., Lorenzo, M. L., Jimenez, B., Sánchez-Ortiz, A., & Rivas, A. (2016). Phenolic compounds in extra virgin olive oil stimulate human osteoblastic cell proliferation. PLoS One, 11(3), e0150045.

García-Villalba, R., Carrasco-Pancorbo, A., Nevedomskaya, E., Mayboroda, O. A., Deelder, A. M., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Exploratory analysis of human urine by LC–ESI-TOF MS after high intake of olive oil: Understanding the metabolism of polyphenols. Analytical and Bioanalytical Chemistry, 398, 463-475.

García Pérez, J., Mulet Pons, A., & Carcel Carrión, J. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Reviews, 3, 108-120.

Gharsallaoui, M., Benincasa, C., Ayadi, M., Perri, E., Khlif, M., & Gabsi, S. (2011). Study on the impact of wastewater irrigation on the quality of oils obtained from olives harvested by hand and from the ground and extracted at different times after the harvesting. Scientia Horticulturae, 128(1), 23-29.

Ghasemi, S., Koohi, D. E., Emmamzadehhashemi, M. S. B., Khamas, S. S., Moazen, M., Hashemi, A. K., Amin, G., Golfakhrabadi, F., Yousefi, Z., et al. (2018). Investigation of phenolic compounds and antioxidant activity of leaves extracts from seventeen cultivars of Iranian olive (Olea europaea L.). Journal of Food Science and Technology, 55, 4600-4607.

Ghomari, O., Sounni, F., Massaoudi, Y., Ghanam, J., Kaitouni, L. B. D., Merzouki, M., & Benlemlih, M. (2019). Phenolic profile (HPLC-UV) of olive leaves according to extraction procedure and assessment of antibacterial activity. Biotechnology Reports, 23, e00347.

Gonçalves, A., Silva, E., Brito, C., Martins, S., Pinto, L., Dinis, L. T., Luzio, A., Martins‐Gomes, C., Fernandes‐Silva, A., et al. (2020). Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies. Journal of the Science of Food and Agriculture, 100(2), 682-694.

Gueboudji, Z., Kadi, K., Mahmoudi, M., Hannachi, H., Nagaz, K., Addad, D., Yahya, L. B., Lachehib, B., & Hessini, K. (2023). Maceration and liquid–liquid extractions of phenolic compounds and antioxidants from Algerian olive oil mill wastewater. Environmental Science and Pollution Research, 30(2), 3432-3439.

Gunning, K., Pippitt, K., Kiraly, B., & Sayler, M. (2012). Pediculosis and scabies: a treatment update. American Family Physician, 86(6), 535-541.

Hashmi, M. A., Khan, A., Hanif, M., Farooq, U., & Perveen, S. (2015). Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evidence-Based Complementary and Alternative Medicine, 2015, 541591.

IOC. (2022). International Olive Council. Retrieved from

Issaoui, A., Ksibi, H., & Ksibi, M. (2017a). Comparison between several techniques of olive tree bark extraction (Tunisian Chemlali variety). Natural Product Research, 31(1), 113-116.

Issaoui, A., Ksibi, H., & Ksibi, M. (2017b). Supercritical fluid extraction of triterpenes and aliphatic hydrocarbons from olive tree derivatives. Arabian Journal of Chemistry, 10, S3967-S3973.

Issaoui, A., Mahfoudh, A., Ksibi, H., & Ksibi, M. (2012). Composition of the olive tree bark: Richness in Oleuropein. Trends in Chemical Engineering, 14, 65-69.

Issazadeh, K., Aliabadi, M. A., Darsanaki, R. K., & Pahlaviani, M. R. M. K. (2012). Antimutagenic activity of olive leaf aqueous extract by Ames test. Advanced Studies in Biology, 4(9), 397-405.

Japón-Luján, R., Luque-Rodríguez, J., & De Castro, M. L. (2006). Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A, 1108(1), 76-82.

Jemai, H., Bouaziz, M., Fki, I., El Feki, A., & Sayadi, S. (2008). Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chemico-Biological Interactions, 176(2-3), 88-98.

Khwaldia, K., Attour, N., Matthes, J., Beck, L., & Schmid, M. (2022). Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1218-1253.

Ksibi, H. (2004). The solvent-solute interaction in supercritical solution at equilibrium: modeling and related industrial applications. International Journal of Thermodynamics, 7(3), 131-140.

Ksibi, H., & Ksibi, M. (2018). Structural analysis of the main phenolic compounds in olive leaves (Tunisian Chemlali variety). Trends in Chemical Engineering, 1-16.

Kulak, M., & Cetinkaya, H. (2018). A systematic review: polyphenol contents in stressed-olive trees and its fruit oil. In J. Wong (Ed.), Polyphenols (pp. 3-20): IntechOpen.

Langgut, D., Cheddadi, R., Carrión, J. S., Cavanagh, M., Colombaroli, D., Eastwood, W. J., Greenberg, R., Litt, T., Mercuri, A. M., et al. (2019). The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. The Holocene, 29(5), 902-922.

Lanzón, A., Albi, T., Cert, A., & Gracián, J. (1994). The hydrocarbon fraction of virgin olive oil and changes resulting from refining. Journal of the American Oil Chemists’ Society, 71, 285-291.

Lavee, S., & Avidan, N. (1993). Protein content and composition of leaves and shoot bark in relation to alternate bearing of olive trees (Olea europaea L.). Paper presented at the II International Symposium on Olive Growing 356.

Le Floch, F., Tena, M., Rios, A., & Valcarcel, M. (1998). Supercritical fluid extraction of phenol compounds from olive leaves. Talanta, 46(5), 1123-1130.

Le Tutour, B., & Guedon, D. (1992). Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry, 31(4), 1173-1178.

Lee-Huang, S., Zhang, L., Huang, P. L., Chang, Y. T., & Huang, P. L. (2003). Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochemical and Biophysical Research Communications, 307(4), 1029-1037.

Lo Giudice, V., Faraone, I., Bruno, M. R., Ponticelli, M., Labanca, F., Bisaccia, D., Massarelli, C., Milella, L., & Todaro, L. (2021). Olive trees by-products as sources of bioactive and other industrially useful compounds: A systematic review. Molecules, 26(16), 5081.

Lone, R., Shuab, R., & Koul, K. (2014). Role of cinnamate and cinnamate derivatives in pharmacology. Journal of Pharmacology, 8, 328-335.

Malik, N., & Bradford, J. (2008). Stability of oleuropein and other phenolic compounds during various extraction and processing methods of olive leaves. Journal of Food, Agriculture, and Environment, 6, 8-13.

Manna, C., Migliardi, V., Golino, P., Scognamiglio, A., Galletti, P., Chiariello, M., & Zappia, V. (2004). Oleuropein prevents oxidative myocardial injury induced by ischemia and reperfusion. The Journal of Nutritional Biochemistry, 15(8), 461-466.

Mansour-Gueddes, S. B., Saidana, D., Jabnoun-Khiareddine, H., Bchir, A., Daami-Remadi, M., & Braham, M. (2020). Chemical composition and biological activities assess-ment of olive fruit volatiles from different varieties grown in Tunisia. Acta Scientiarum Polonorum Hortorum Cultus, 19(4), 3-20.

Mariem, Z., Zied, D. M., Ooussema, J., & Salah, B. (2019). Assessment of the Tunisian olive oil value chain in the international markets: Constraints and Opportunities. FARA Research Result, 4(2), PP36.

Markin, D., Duek, L., & Berdicevsky, I. (2003). In vitro antimicrobial activity of olive leaves. Antimikrobielle Wirksamkeit von Olivenblättern in vitro. Mycoses, 46(3‐4), 132-136.

Martín-García, B., De Montijo-Prieto, S., Jiménez-Valera, M., Carrasco-Pancorbo, A., Ruiz-Bravo, A., Verardo, V., & Gómez-Caravaca, A. M. (2022). Comparative extraction of phenolic compounds from olive leaves using a sonotrode and an ultrasonic bath and the evaluation of both antioxidant and antimicrobial activity. Antioxidants, 11(3), 558.

Martínez‐Beamonte, R., Sanclemente, T., Surra, J. C., & Osada, J. (2020). Could squalene be an added value to use olive by‐products? Journal of the Science of Food and Agriculture, 100(3), 915-925.

Mateos, R., Goya, L., & Bravo, L. (2005). Metabolism of the olive oil phenols hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate by human hepatoma HepG2 cells. Journal of Agricultural and Food Chemistry, 53(26), 9897-9905.

McDonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73(1), 73-84.

Mechi, D., Baccouri, B., Martín-Vertedor, D., & Abaza, L. (2023). Bioavailability of phenolic compounds in Californian-Style table olives with Tunisian aqueous olive leaf extracts. Molecules, 28(2), 707.

Menendez, J. A., Vazquez-Martin, A., Garcia-Villalba, R., Carrasco-Pancorbo, A., Oliveras-Ferraros, C., Fernandez-Gutierrez, A., & Segura-Carretero, A. (2008). TabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO). Bmc Cancer, 8, 377.

Mohamed, M. B., Guasmi, F., Ali, S. B., Radhouani, F., Faghim, J., Triki, T., Kammoun, N. G., Baffi, C., Lucini, L., et al. (2018). The LC-MS/MS characterization of phenolic compounds in leaves allows classifying olive cultivars grown in South Tunisia. Biochemical Systematics and Ecology, 78, 84-90.

Naija, D. S., Gueddes, S. B. M., Flamini, G., Khiareddine, H. J., Remadi, M. D., Mariem, F. B., Ghariani, W., & Braham, M. (2021). Assessment of Antioxidant and Antimicrobial Compounds of Volatiles from Leaves, Stems and Flowers of Olives. Polish Journal of Environmental Studies, 30(2), 1325–1338.

Obied, H. K., Allen, M. S., Bedgood, D. R., Prenzler, P. D., & Robards, K. (2005). Investigation of Australian olive mill waste for recovery of biophenols. Journal of Agricultural and Food Chemistry, 53(26), 9911-9920.

Oliveras-Ferraros, C., Fernandez-Arroyo, S., Vazquez-Martin, A., Lozano-Sanchez, J., Cufi, S., Joven, J., Micol, V., Fernandez-Gutierrez, A., Segura-Carretero, A., et al. (2011). Crude phenolic extracts from extra virgin olive oil circumvent de novo breast cancer resistance to HER1/HER2-targeting drugs by inducing GADD45-sensed cellular stress, G2/M arrest and hyperacetylation of Histone H3. International Journal of Oncology, 38(6), 1533-1547.

Owen, R., Haubner, R., Würtele, G., Hull, W., Spiegelhaider, B., & Bartsch, H. (2004). Olives and olive oil in cancer prevention. European Journal of Cancer Prevention, 13(4), 319-326.

Özcan, M. M., & Matthäus, B. (2017). A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. European Food Research and Technology, 243, 89-99.

Pacheco, A., Barros, L., Freitas, M., Reis, M., Hipólito, C., & Oliveira, O. (2002). An evaluation of olive-tree bark for the biological monitoring of airborne trace-elements at ground level. Environmental Pollution, 120(1), 79-86.

Parra, A., Martin-Fonseca, S., Rivas, F., Reyes-Zurita, F. J., Medina-O'Donnell, M., Martinez, A., Garcia-Granados, A., Lupianez, J. A., & Albericio, F. (2014). Semi-synthesis of acylated triterpenes from olive-oil industry wastes for the development of anticancer and anti-HIV agents. European Journal of Medicinal Chemistry, 74, 278-301.

Pérez-Rodrigo, C., & Aranceta, J. (2016). Olive oil: Its role in the diet. 158-166.

Popa, O., Băbeanu, N. E., Popa, I., Niță, S., & Dinu-Pârvu, C. E. (2015). Methods for obtaining and determination of squalene from natural sources. BioMed Research International, 2015, 367202.

Quirantes‐Piné, R., Lozano‐Sánchez, J., Herrero, M., Ibáñez, E., Segura‐Carretero, A., & Fernández‐Gutiérrez, A. (2013). HPLC–ESI–QTOF–MS as a powerful analytical tool for characterising phenolic compounds in olive‐leaf extracts. Phytochemical Analysis, 24(3), 213-223.

Rada, M., Guinda, Á., & Cayuela, J. (2007). Solid/liquid extraction and isolation by molecular distillation of hydroxytyrosol from Olea europaea L. leaves. European Journal of Lipid Science and Technology, 109(11), 1071-1076.

Rashed, S. A., Saad, T. I., & El-Darier, S. M. (2022). Potential aptitude of four olive cultivars as anticancer and antioxidant agents: Oleuropein content. Rendiconti Lincei. Scienze Fisiche e Naturali, 33(1), 195-203.

Reverchon, E., & De Marco, I. (2006). Supercritical fluid extraction and fractionation of natural matter. The Journal of Supercritical Fluids, 38(2), 146-166.

Romero, C., & Brenes, M. (2012). Analysis of total contents of hydroxytyrosol and tyrosol in olive oils. Journal of Agricultural and Food Chemistry, 60(36), 9017-9022.

Rufino-Palomares, E. E., Pérez-Jiménez, A., García-Salguero, L., Mokhtari, K., Reyes-Zurita, F. J., Peragón-Sánchez, J., & Lupiáñez, J. A. (2022). Nutraceutical role of polyphenols and triterpenes present in the extracts of fruits and leaves of Olea europaea as antioxidants, anti-infectives and anticancer agents on healthy growth. Molecules, 27(7), 2341.

Ryan, D., Antolovich, M., Prenzler, P., Robards, K., & Lavee, S. (2002). Biotransformations of phenolic compounds in Olea europaea L. Scientia Horticulturae, 92(2), 147-176.

Ryan, D., Robards, K., & Lavee, S. (1999). Changes in phenolic content of olive during maturation. International Journal of Food Science & Technology, 34(3), 265-274.

Sellami, M. K., Khemakhem, I., Mkadmini, K., & Bouzouita, N. (2016). Chemical composition, antioxidant potential and phenolic profile of oil mill waste water from Tunisian olive varieties (Chetoui and Chemlali). Mediterranean Journal of Chemistry, 5(6), 605-614.

Senouci, H., Benyelles, N. G., Dib, M. E., Costa, J., & Muselli, A. (2020). Ammoides verticillata essential oil as biocontrol agent of selected fungi and pest of olive tree. Recent Patents on Food, Nutrition & Agriculture, 11(2), 182-188.

Shaw, T. M. (2000). Ascetic Eucharists: Food and Drink in Early Christian Ritual Meals. Journal of Early Christian Studies, 8(4), 608-609.

Spadi, A., Angeloni, G., Cecchi, L., Corti, F., Balli, D., Guerrini, L., Calamai, L., Parenti, A., & Masella, P. (2023). Exploiting Virgin Olive Oil By-products Using Hydrodistillation. Waste and Biomass Valorization, 14(6), 1931-1944.

Strub, D. J., Talma, M., Strub, M., Rut, W., Zmudzinski, M., Brud, W., Neyts, J., Vangeel, L., Zhang, L., et al. (2022). Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts. Scientific Reports, 12(1), 14230.

Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167-2180.

Tacer, S., & Aşan Özüsağlam, M. (2022). The Potential Uses of Olive Leaf Extracts in Various Areas. Eurasian Journal of Food Science and Technology, 6(1), 8-22.

Tamasi, G., Bonechi, C., Belyakova, A., Pardini, A., & Rossi, C. (2016). The olive tree, a source of antioxidant compounds. Journal of the Siena Academy of Sciences, 8(1), 10-29.

Toric, J., Karkovic Markovic, A., Jakobusic Brala, C., & Barbaric, M. (2019). Anticancer effects of olive oil polyphenols and their combinations with anticancer drugs. Acta Pharmaceutica, 69(4), 461-482.

Tóth, G., Alberti, Á., Sólyomváry, A., Barabás, C., Boldizsár, I., & Noszál, B. (2015). Phenolic profiling of various olive bark-types and leaves: HPLC–ESI/MS study. Industrial Crops and Products, 67, 432-438.

Ueda, H., Yamazaki, C., & Yamazaki, M. (2002). Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biological and Pharmaceutical Bulletin, 25(9), 1197-1202.

Ünver, N., & Çelik, Ş. (2022). Optimization of ultrasound-assisted extraction of olive leaf (var. halhali) extracts. Hacettepe Journal of Biology and Chemistry, 50(2), 173-184.

Vetter, W., Schröder, M., & Lehnert, K. (2012). Differentiation of refined and virgin edible oils by means of the trans-and cis-phytol isomer distribution. Journal of Agricultural and Food Chemistry, 60(24), 6103-6107.

Wang, W., Tai, F., & Hu, X. (2010). Current initiatives in proteomics of the olive tree. In V. Preedy & R. Watson (Eds.), Olives and olive oil in health and disease prevention (pp. 25-32): Elsevier.

Yorulmaz, A., Poyrazoglu, E. S., Ozcan, M. M., & Tekin, A. (2012). Phenolic profiles of Turkish olives and olive oils. European Journal of Lipid Science and Technology, 114(9), 1083-1093.

Yuan, J. J., Wang, C. Z., Ye, J. Z., Tao, R., & Zhang, Y. S. (2015). Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities. Molecules, 20(2), 2903-2921.

Zheljazkov, V. D., Astatkie, T., & Schlegel, V. (2014). Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil. Journal of Oleo Science, 63(9), 857-865.




How to Cite

Ksibi, H. (2023). Bioactive chemlali olive derivatives and compounds useful for pharmaceutical purposes: A review. International Journal of Plant Based Pharmaceuticals, 3(2), 215–227.



Received 2023-05-04
Accepted 2023-10-22
Published 2023-10-27