Ruellia simplex C. Wright (Acanthaceae): Antinociceptive, anti-inflammatory, and antidiabetic activities of a novel fatty acid isolated from its leaf extract


Abstract views: 2701 / PDF downloads: 998

Authors

DOI:

https://doi.org/10.29228/ijpbp.13

Keywords:

Ruellia simplex, Antinociceptive, Anti-inflammatory, Antidiabetics, Fatty acid

Abstract

Ruellia simplex is a medicinal plant whose leaf is used to treat pains, inflammation, and diabetes in Nigeria. The current study was undertaken to determine the antinociceptive (analgesics), anti-inflammatory, and antidiabetic activities of a novel fatty acid isolated from the leaf extract of R. simplex. Isolation of a novel fatty acid from the most active fraction was carried out on silica gel column chromatography while, antinociceptive, anti-inflammatory, and antidiabetic activities of the isolated compound were evaluated by acetic acid, carrageenan, and alloxan-induced animal models respectively. The chemical structure of the new compound was elucidated by FT-IR, NMR, GC-MS, and LC-MS. The isolated fatty acid showed inhibition of pains by decreasing abdominal writhing in mice in dose dependent fashion as well as reduced paw volume in the carrageenan-induced paw edema in rats at IC50 = 12.5 ± 1.08 μg/ml and 10.21 ± 1.02 μg/ml, respectively, whereas the antidiabetic activity showed a dose dependent reduction in blood sugar levels with IC50 = 6.02 ± 0.01 μg/ml. The compound showed the following features: R-COOH functional group at 3327 wavelength cm-1 by FTIR; EI-MS [M]+* at m/z 467, peak area 62.231% and RT 14.086 min by GC-MS; singly charged fragments at m/z 116.1 and m/z 465.1, RT 1.31 min by LC-MS and eight proton signals consisting of singlets and multiplets (1H), thirty carbon atoms (13C) NMR data. From the study, the novel fatty acid from R. simplex extract was potentially active for the treatment of pains, inflammation, and diabetes.

References

Abotsi, W. K. M., Lamptey, S. B., Afrane, S., Boakye-Gyasi, E., Umoh, R. U., & Woode, E. (2017). An evaluation of the anti-inflammatory, antipyretic and analgesic effects of hydroethanol leaf extract of Albizia zygia in animal models. Pharmaceutical Biology, 55(1), 338-348.

Belachew, T. F., Asrade, S., Geta, M., & Fentahun, E. (2020). In vivo evaluation of wound healing and anti-inflammatory activity of 80% methanol crude flower extract of Hagenia abyssinica (Bruce) JF Gmel in mice. Evidence-Based Complementary and Alternative Medicine, 2020, 9645792.

Boadu, A. A., & Asase, A. (2017). Documentation of Herbal Medicines Used for the Treatment and Management of Human Diseases by Some Communities in Southern Ghana. Evidence-Based Complementary and Alternative Medicine, 2017, 3043061.

De Farias Freire, S. M., Da Silva Emim, J. A., Lapa, A. J., Souccar, C., & Torres, L. M. B. (1993). Analgesic and antiinflammatory properties of Scoparia dulcis L. extracts and glutinol in rodents. Phytotherapy Research, 7(6), 408-414.

Dhasmana, D., Hathorn, E., McGrath, R., Tariq, A., & Ross, J. D. (2014). The effectiveness of nonsteroidal anti-inflammatory agents in the treatment of pelvic inflammatory disease: a systematic review. Systematic Reviews, 3(79), 1-6.

Evans, W. (2002). Trease and Evans Pharmacognosy: Souders Elsevier.

Forman, G. S., Bellabarba, R. M., Tooze, R. P., Slawin, A. M., Karch, R., & Winde, R. (2006). Metathesis of renewable unsaturated fatty acid esters catalysed by a phoban-indenylidene ruthenium catalyst. Journal of Organometallic Chemistry, 691(24-25), 5513-5516.

González, R., Ballester, I., López-Posadas, R., Suárez, M., Zarzuelo, A., Martínez-Augustin, O., & Medina, F. S. D. (2011). Effects of flavonoids and other polyphenols on inflammation. Critical Reviews in Food Science and Nutrition, 51(4), 331-362.

Ibrahim, M. A., Koorbanally, N. A., & Islam, M. S. (2014). Anti-oxidative activity and inhibition of key enzymes linked to type 2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis. Acta Pharmaceutica, 64(3), 311-324.

Iwu, M. M. (2014). The Medicinal plants of West tropical Africa. 2nd Edition: Taylor & Francis.

Jacobs, H., Singh, T., Reynolds, W. F., & McLean, S. (1990). Isolation and 13C-NMR Assignments of Cucurbitacins from Cayaponia angustiloba, Cayaponia racemosa, and Gurania subumbellata. Journal of Natural Products, 53(6), 1600-1605.

Jothy, S. L., Zakaria, Z., Chen, Y., Lau, Y. L., Latha, L. Y., Shin, L. N., & Sasidharan, S. (2011). Bioassay-directed isolation of active compounds with antiyeast activity from a Cassia fistula seed extract. Molecules, 16(9), 7583-7592.

Kumar, D., Kumar, H., Vedasiromoni, J., & Pal, B. C. (2012). Bio‐assay guided isolation of α‐glucosidase inhibitory constituents from Hibiscus mutabilis Leaves. Phytochemical Analysis, 23(5), 421-425.

Kumar, N., Devineni, S. R., Gajjala, P. R., Dubey, S. K., & Kumar, P. (2017). Synthesis, isolation, identification and characterization of new process-related impurity in isoproterenol hydrochloride by HPLC, LC/ESI-MS and NMR. Journal of Pharmaceutical Analysis, 7(6), 394-400.

Maritim, A., Sanders, R., & Watkins, J. (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology, 17(1), 24-38.

Mohamed, E. A. H., Siddiqui, M. J. A., Ang, L. F., Sadikun, A., Chan, S. H., Tan, S. C., Asmawi, M. Z., & Yam, M. F. (2012). Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complementary and Alternative Medicine, 12(176), 1-7.

Nguyen, T., Chen, X., Chai, J., Li, R., Han, X., Chen, X., Liu, S., Chen, M., & Xu, X. (2020). Antipyretic, anti-inflammatory and analgesic activities of Periplaneta americana extract and underlying mechanisms. Biomedicine & Pharmacotherapy, 123, 109753.

Ojo, O. A., Ajiboye, B. O., Imiere, O. D., Adeyonu, O., Olayide, I., & Fadaka, A. (2018). Antioxidative properties of Blighia sapida KD Koenig stem bark extract and inhibitory effects on carbohydrate hydrolyzing enzymes associated with non-insulin dependent diabetes mellitus. Pharmacognosy Journal, 10(2), 376-383.

Padmanabhan, P., & Jangle, S. (2012). Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International Journal of Basic and Applied Medical Sciences, 2(1), 109-116.

Pan, M.-H., Lai, C.-S., & Ho, C.-T. (2010). Anti-inflammatory activity of natural dietary flavonoids. Food & Function, 1(1), 15-31.

Pinto, M. E., Araujo, S. G., Morais, M. I., Sa, N. P., Lima, C. M., Rosa, C. A., Siqueira, E. P., Johann, S., & Lima, L. A. (2017). Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. Anais da Academia Brasileira de Ciências, 89(3), 1671-1681.

Schippmann, U., Leaman, D., & Cunningham, A. (2006). Plants as source of medicines: new perspectives (Vol. 17). Netherlands: Springer, Dordrecht.

Sharma, H. K., Chhangte, L., & Dolui, A. K. (2001). Traditional medicinal plants in Mizoram, India. Fitoterapia, 72(2), 146-161.

Siddiqui, M. J. A., Ismail, Z., & Saidan, N. H. (2011). Simultaneous determination of secondary metabolites from Vinca rosea plant extractives by reverse phase high performance liquid chromatography. Pharmacognosy Magazine, 7(26), 92-96.

Tabuti, J. R., Kukunda, C. B., Kaweesi, D., & Kasilo, O. M. (2012). Herbal medicine use in the districts of Nakapiripirit, Pallisa, Kanungu, and Mukono in Uganda. Journal of Ethnobiology and Ethnomedicine, 8, 35.

Ukwubile, C. A., Ikpefan, E. O., Malgwi, T. S., Dibal, M. Y., Famurewa, A. C., Rasheed-Jada, H., Milagawanda, H. H., & Suleiman, A. U. (2021). Antioxidant, anti-inflammatory, analgesic and in vitro-in vivo cytotoxicity effects of Spondias venulosa (Engl.) Engl. leaf extracts on MCF-7/S0. 5 and OV7 cancer cell lines. Scientific African, 13, e00917.

Valdés, E., González, C., Díaz, K., Vásquez-Martínez, Y., Mascayano, C., Torrent, C., Cabezas, F., Mejias, S., Montoya, M., et al. (2020). Biological properties and absolute configuration of flavanones from Calceolaria thyrsiflora Graham. Frontiers in Pharmacology, 11, 1125.

Vane, J. R., & Botting, R. M. (1998). Anti-inflammatory drugs and their mechanism of action. Inflammation Research, 47(2), 78-87.

Wiernsperger, N. (2003). Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes & Metabolism, 29(6), 579-585.

Yeshwante, S., Juvekar, A., Nagmoti, D., Wankhede, S., Shah, A., Pimprikar, R., & Saindane, D. (2009). Anti-inflammatory activity of methanolic extracts of Dillenia indica L. leaves. Journal of Young Pharmacists, 1(1), 63.

Downloads

Published

07.10.2022

How to Cite

Ukwubile, C. A., Nettey, H., Malgwi, T. S., & Menkiti, N. D. (2022). Ruellia simplex C. Wright (Acanthaceae): Antinociceptive, anti-inflammatory, and antidiabetic activities of a novel fatty acid isolated from its leaf extract. International Journal of Plant Based Pharmaceuticals, 3(1), 32–40. https://doi.org/10.29228/ijpbp.13

Issue

Section

Research Articles
Received 2022-08-12
Accepted 2022-10-05
Published 2022-10-07