Extraction of phenolic compounds and antioxidant activity analysis of Ficus carica L. seed oil using supercritical fluid technology
Abstract views: 151 / PDF downloads: 76
DOI:
https://doi.org/10.62313/ijpbp.2024.251Keywords:
Fig kernel, Phenolic compounds, Supercritical fluid extractionAbstract
The rationale behind this study was to investigate the potential of fig (Ficus carica L.) kernel oil as a source of bioactive compounds, particularly focusing on its phenolic compounds, due to the increasing interest in plant-based oils with antioxidant properties for use in functional foods and nutraceuticals. The primary objective was to identify and quantify the active phenolic components present in fig kernel oil. Utilizing an additional co-solvent in the supercritical fluid extraction (SFE) process, specific phenolic compounds, such as 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, and syringic acid, were exclusively identified in the CO2 + ethanol (IC-2-1) sample. Furthermore, other notable compounds, including vanillin, verbascoside, ferulic acid, luteolin 7-glucoside, hesperidin, rosmarinic acid, quercetin, and kaempferol, were detected in both the IC-2-1 and CO2 (IC-1-1) samples. These findings suggest that fig kernel oil with its rich phytochemical profile, is a promising alternative oil source and has significant potential as a functional food ingredient. Further research on the SFE of fig seeds and oil is recommended to expand its applications and potential health benefits.
References
Abbasi, A. M., Khan, M. A., Khan, N., & Shah, M. H. (2013). Ethnobotanical survey of medicinally important wild edible fruits species used by tribal communities of Lesser Himalayas-Pakistan. Journal of Ethnopharmacology, 148(2), 528-536. https://doi.org/10.1016/j.jep.2013.04.050 DOI: https://doi.org/10.1016/j.jep.2013.04.050
Al Mousa, A. A., Abouelela, M. E., Al Ghamidi, N. S., Abo-Dahab, Y., Mohamed, H., Abo-Dahab, N. F., & Hassane, A. M. (2023). Anti-Staphylococcal, Anti-Candida, and Free-Radical Scavenging Potential of Soil Fungal Metabolites: A Study Supported by Phenolic Characterization and Molecular Docking Analysis. Current Issues in Molecular Biology, 46(1), 221-243. https://doi.org/10.3390/cimb46010016 DOI: https://doi.org/10.3390/cimb46010016
Alves, E., Simoes, A., & Domingues, M. R. (2021). Fruit seeds and their oils as promising sources of value-added lipids from agro-industrial byproducts: Oil content, lipid composition, lipid analysis, biological activity and potential biotechnological applications. Critical Reviews in Food Science and Nutrition, 61(8), 1305-1339. https://doi.org/10.1080/10408398.2020.1757617 DOI: https://doi.org/10.1080/10408398.2020.1757617
Antony, J. (2023). Design of experiments for engineers and scientists: Elsevier.
Argon, Z. U., Celenk, V. U., & Gumus, Z. P. (2020). Cold pressed grape (Vitis vinifera) seed oil. In M. Ramadan (Ed.), Cold Pressed Oils (pp. 39-52): Academic Press. https://doi.org/10.1016/B978-0-12-818188-1.00005-0 DOI: https://doi.org/10.1016/B978-0-12-818188-1.00005-0
Badgujar, S. B., Patel, V. V., Bandivdekar, A. H., & Mahajan, R. T. (2014). Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharmaceutical Biology, 52(11), 1487-1503. https://doi.org/10.3109/13880209.2014.892515 DOI: https://doi.org/10.3109/13880209.2014.892515
Barolo, M. I., Mostacero, N. R., & López, S. N. (2014). Ficus carica L. (Moraceae): An ancient source of food and health. Food Chemistry, 164, 119-127. https://doi.org/10.1016/j.foodchem.2014.04.112 DOI: https://doi.org/10.1016/j.foodchem.2014.04.112
Baygeldi, N., Küçükerdönmez, Ö., Akder, R. N., & Çağındı, Ö. (2021). Medicinal and nutritional analysis of fig (Ficus carica) seed oil; a new gamma tocopherol and omega-3 source. Progress in Nutrition, 23(2), e2021052. https://doi.org/10.23751/pn.v23i2.9980
Beveridge, T. H., Girard, B., Kopp, T., & Drover, J. C. (2005). Yield and composition of grape seed oils extracted by supercritical carbon dioxide and petroleum ether: varietal effects. Journal of Agricultural and Food Chemistry, 53(5), 1799-1804. https://doi.org/10.1021/jf040295q DOI: https://doi.org/10.1021/jf040295q
Bharti, S. K., Kumar, A., Sharma, N. K., Prakash, O., Jaiswal, S. K., Krishnan, S., Gupta, A. K., & Kumar, A. (2013). Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by in vivo experiments supported by computational docking. Journal of the Formosan Medical Association, 112(11), 676-690. https://doi.org/10.1016/j.jfma.2013.08.003 DOI: https://doi.org/10.1016/j.jfma.2013.08.003
Bozan, B., & Temelli, F. (2002). Supercritical CO2 extraction of flaxseed. Journal of the American Oil Chemists' Society, 79(3), 231-235. https://doi.org/10.1007/s11746-002-0466-x DOI: https://doi.org/10.1007/s11746-002-0466-x
Campbell, S. E., Stone, W. L., Whaley, S. G., Qui, M., & Krishnan, K. (2003). Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines. BMC Cancer, 3, 25. https://doi.org/10.1186/1471-2407-3-25 DOI: https://doi.org/10.1186/1471-2407-3-25
Cihat Icyer, N., Toker, O. S., Karasu, S., Tornuk, F., Kahyaoglu, T., & Arici, M. (2017). Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. Journal of Food Measurement and Characterization, 11, 50-57. https://doi.org/10.1007/s11694-016-9370-8 DOI: https://doi.org/10.1007/s11694-016-9370-8
da Silva, R. P., Rocha-Santos, T. A., & Duarte, A. C. (2016). Supercritical fluid extraction of bioactive compounds. Trends in Analytical Chemistry, 76, 40-51. https://doi.org/10.1016/j.trac.2015.11.013 DOI: https://doi.org/10.1016/j.trac.2015.11.013
Devasagayam, T., Tilak, J., Boloor, K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. (2004). Free radicals and antioxidants in human health: current status and future prospects. JAPI, 52, 794-804.
Dunford, N. T., & Temelli, F. (1997). Extraction conditions and moisture content of canola flakes as related to lipid composition of supercritical CO2 extracts. Journal of Food Science, 62(1), 155-159. https://doi.org/10.1111/j.1365-2621.1997.tb04389.x DOI: https://doi.org/10.1111/j.1365-2621.1997.tb04389.x
Ergun, Z., & Bozkurt, T. (2020). Determination of fatty acid composition and antioxidant activity of fig seed oil. International Journal of Agricultural and Natural Sciences, 13(2), 101-107.
Hassane, A. M., Hussien, S. M., Abouelela, M. E., Taha, T. M., Awad, M. F., Mohamed, H., Hassan, M. M., Hassan, M. H., Abo-Dahab, N. F., & El-Shanawany, A. R. A. (2022a). In vitro and in silico antioxidant efficiency of bio-potent secondary metabolites from different taxa of black seed-producing plants and their derived mycoendophytes. Frontiers in Bioengineering and Biotechnology, 10, 930161. https://doi.org/10.3389/fbioe.2022.930161 DOI: https://doi.org/10.3389/fbioe.2022.930161
Hassane, A. M., Taha, T. M., Awad, M. F., Mohamed, H., & Melebari, M. (2022b). Radical scavenging potency, HPLC profiling and phylogenetic analysis of endophytic fungi isolated from selected medicinal plants of Saudi Arabia. Electronic Journal of Biotechnology, 58, 37-45. https://doi.org/10.1016/j.ejbt.2022.05.001 DOI: https://doi.org/10.1016/j.ejbt.2022.05.001
Helzlsouer, K. J., Huang, H. Y., Alberg, A. J., Hoffman, S., Burke, A., Norkus, E. P., Morris, J. S., & Comstock, G. W. (2000). Association between α-tocopherol, γ-tocopherol, selenium, and subsequent prostate cancer. JNCI: Journal of the National Cancer Institute, 92(24), 2018-2023. https://doi.org/10.1093/jnci/92.24.2018 DOI: https://doi.org/10.1093/jnci/92.24.2018
Hssaini, L., Hanine, H., Charafi, J., Razouk, R., Elantari, A., Ennahli, S., Hernández, F., & Ouaabou, R. (2020). First report on fatty acids composition, total phenolics and antioxidant activity in seeds oil of four fig cultivars (Ficus carica L.) grown in Morocco. OCL, 27(8), 1-10. https://doi.org/10.1051/ocl/2020003 DOI: https://doi.org/10.1051/ocl/2020003
Jeong, W., & Lachance, P. (2001). Phytosterols and fatty acids in fig (Ficus carica, var. mission) fruit and tree components. Journal of Food Science, 66(2), 278-281. https://doi.org/10.1111/j.1365-2621.2001.tb11332.x DOI: https://doi.org/10.1111/j.1365-2621.2001.tb11332.x
Jiang, Q., Christen, S., Shigenaga, M. K., & Ames, B. N. (2001). γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. The American Journal of Clinical Nutrition, 74(6), 714-722. https://doi.org/10.1093/ajcn/74.6.714 DOI: https://doi.org/10.1093/ajcn/74.6.714
Jiang, Q., Elson-Schwab, I., Courtemanche, C., & Ames, B. N. (2000). γ-Tocopherol and its major metabolite, in contrast to α-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proceedings of the National Academy of Sciences, 97(21), 11494-11499. https://doi.org/10.1073/pnas.200357097 DOI: https://doi.org/10.1073/pnas.200357097
Joerin, L., Kauschka, M., Bonnländer, B., Pischel, I., Benedek, B., & Butterweck, V. (2014). Ficus carica Leaf Extract Modulates the Lipid Profile of Rats Fed with a High‐Fat Diet through an Increase of HDL‐C. Phytotherapy Research, 28(2), 261-267. https://doi.org/10.1002/ptr.4994 DOI: https://doi.org/10.1002/ptr.4994
Kocak, M. S., Sarikurkcu, C., Cengiz, M., Kocak, S., Uren, M. C., & Tepe, B. (2016). Salvia cadmica: Phenolic composition and biological activity. Industrial Crops and Products, 85, 204-212. https://doi.org/10.1016/j.indcrop.2016.03.015 DOI: https://doi.org/10.1016/j.indcrop.2016.03.015
Kristenson, M., Zieden, B., Kucinskiene, Z., Abaravicius, A., RazinkovienË, L., Elinder, L. S., Bergdahl, B., Elwing, B., Calkauskas, H., & Olsson, A. G. (1997). Antioxidant state and mortality from coronary heart disease in Lithuanian and Swedish men: concomitant cross sectional study of men aged 50. BMJ, 314(7081), 629. https://doi.org/10.1136/bmj.314.7081.629 DOI: https://doi.org/10.1136/bmj.314.7081.629
Mahmoudi, S., Khali, M., Benkhaled, A., Benamirouche, K., & Baiti, I. (2016). Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pacific Journal of Tropical Biomedicine, 6(3), 239-245. https://doi.org/10.1016/j.apjtb.2015.12.010 DOI: https://doi.org/10.1016/j.apjtb.2015.12.010
Marrone, C., Poletto, M., Reverchon, E., & Stassi, A. (1998). Almond oil extraction by supercritical CO2: experiments and modelling. Chemical Engineering Science, 53(21), 3711-3718. https://doi.org/10.1016/S0009-2509(98)00150-X DOI: https://doi.org/10.1016/S0009-2509(98)00150-X
Mawa, S., Husain, K., & Jantan, I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evidence‐Based Complementary and Alternative Medicine, 2013, 974256. https://doi.org/10.1155/2013/974256 DOI: https://doi.org/10.1155/2013/974256
McHugh, M., & Krukonis, V. (2013). Supercritical fluid extraction: principles and practice: Butterworth-Heinemann series in Chemical Engineering.
Namiki, M., Fukuda, Y., Takei, Y., Namiki, K., & Koizumi, Y. (2002). Changes in functional factors of sesame seed and oil during various types of processing. In T. Lee & C. Ho (Eds.), Bioactive Compounds in Foods (pp. 85-104): ACS Publications. https://doi.org/10.1021/bk-2002-0816.ch007 DOI: https://doi.org/10.1021/bk-2002-0816.ch007
Oliveira, R., Fátima Rodrigues, M., & Gabriela Bernardo‐Gil, M. (2002). Characterization and supercritical carbon dioxide extraction of walnut oil. Journal of the American Oil Chemists' Society, 79(3), 225-230. https://doi.org/10.1007/s11746-002-0465-y DOI: https://doi.org/10.1007/s11746-002-0465-y
Özkal, S., Yener, M. E., & Bayındırlı, L. (2005). Response surfaces of apricot kernel oil yield in supercritical carbon dioxide. LWT-Food Science and Technology, 38(6), 611-616. https://doi.org/10.1016/j.lwt.2004.08.003 DOI: https://doi.org/10.1016/j.lwt.2004.08.003
Picot-Allain, C., Mahomoodally, M. F., Ak, G., & Zengin, G. (2021). Conventional versus green extraction techniques—A comparative perspective. Current Opinion in Food Science, 40, 144-156. https://doi.org/10.1016/j.cofs.2021.02.009 DOI: https://doi.org/10.1016/j.cofs.2021.02.009
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698 DOI: https://doi.org/10.1021/jf0502698
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Salgın, S., & Salgın, U. (2006). Supercritical fluid extraction of walnut kernel oil. European Journal of Lipid Science and Technology, 108(7), 577-582. https://doi.org/10.1002/ejlt.200600046 DOI: https://doi.org/10.1002/ejlt.200600046
Stepek, G., Behnke, J. M., Buttle, D. J., & Duce, I. R. (2004). Natural plant cysteine proteinases as anthelmintics? Trends in Parasitology, 20(7), 322-327. https://doi.org/10.1016/j.pt.2004.05.003 DOI: https://doi.org/10.1016/j.pt.2004.05.003
Taribak, C., Casas, L., Mantell, C., Elfadli, Z., Metni, R. E., & Martínez de la Ossa, E. J. (2013). Quality of cosmetic argan oil extracted by supercritical fluid extraction from Argania spinosa L. Journal of Chemistry, 2013(1), 408194. https://doi.org/10.1155/2013/408194 DOI: https://doi.org/10.1155/2013/408194
Tarlacı, S. (2021). A new source of omega-3 and gamma tocopherol: Fig (Ficus carica L.) seed oil. Harran Tarım ve Gıda Bilimleri Dergisi, 25(4), 556-560. https://doi.org/10.29050/harranziraat.806278 DOI: https://doi.org/10.29050/harranziraat.806278
Temelli, F. (1992). Extraction of triglycerides and phospholipids from canola with supercritical carbon dioxide and ethanol. Journal of Food Science, 57(2), 440-443. https://doi.org/10.1111/j.1365-2621.1992.tb05512.x DOI: https://doi.org/10.1111/j.1365-2621.1992.tb05512.x
Veberic, R., Colaric, M., & Stampar, F. (2008). Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chemistry, 106(1), 153-157. https://doi.org/10.1016/j.foodchem.2007.05.061 DOI: https://doi.org/10.1016/j.foodchem.2007.05.061
Wojdyło, A., Nowicka, P., Carbonell-Barrachina, Á. A., & Hernández, F. (2016). Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. Journal of Functional Foods, 25, 421-432. https://doi.org/10.1016/j.jff.2016.06.015 DOI: https://doi.org/10.1016/j.jff.2016.06.015
Xu, J., Chen, S., & Hu, Q. (2005). Antioxidant activity of brown pigment and extracts from black sesame seed (Sesamum indicum L.). Food Chemistry, 91(1), 79-83. https://doi.org/10.1016/j.foodchem.2004.05.051 DOI: https://doi.org/10.1016/j.foodchem.2004.05.051
Zaidul, I., Norulaini, N. N., Omar, A. M., & Smith Jr, R. (2007). Supercritical carbon dioxide (SC-CO2) extraction of palm kernel oil from palm kernel. Journal of Food Engineering, 79(3), 1007-1014. https://doi.org/10.1016/j.jfoodeng.2006.03.021 DOI: https://doi.org/10.1016/j.jfoodeng.2006.03.021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Osman Burgaz, İlker Yıldırım, Alper Baycan, Emrah Giziroğlu, Erkan Şimsek, Ibrahim Polat
This work is licensed under a Creative Commons Attribution 4.0 International License.
The papers published in the International Journal of Plant Based Pharmaceuticals are licenced under Creative Commons Attribution 4.0 International Licence (CC BY).
Accepted 2024-12-03
Published 2024-12-06