Edible seeds with potential anti-obesity impact: A Review
Abstract views: 1702 / PDF downloads: 295
DOI:
https://doi.org/10.62313/ijpbp.2022.17Keywords:
Alternative medicine, Dietary supplements, Functional food, Seeds, Obesity, Weight lossAbstract
Obesity and related metabolic diseases prevalence rates have risen dramatically in the recent decades, leading to severe health issues and increased mortality rates. A pressing need is evolved for a potential solution addressing obesity undermining. Bariatric dietary supplements and alternative medicine are recently gaining growing attention as a panacea for obesity owing to their rich nutritional profile and bioactive compounds. This systematic review was conducted to evaluate the current knowledge of some purported dietary seeds commonly used as functional food; quinoa (Chenopodium quinoa, L.), chia (Salvia hispanica L.), Hab El-Rashad (Lepidium sativum, L.), pumpkin (Cucurbita pepo L.) and fenugreek (Trigonella foenum-graecum). Due to the limited scientific evidence for their efficacy, future studies should empirically investigate dietary intervention structure to evaluate the impact on body mass status.
References
Abdulmalek, S.A., Fessal, M., El-Sayed, M., 2021. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. Journal of Ethnopharmacology, 266, 113439. DOI: https://doi.org/10.1016/j.jep.2020.113439
Achari, A.E., Jain, S.K., 2017. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International Journal of Molecular Sciences, 18(6), 1321. DOI: https://doi.org/10.3390/ijms18061321
Achilonu, M.C., Nwafor, I.C., Umesiobi, D.O., Sedibe, M.M., 2018. Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well‐being of poultry species. Journal of Animal Physiology and Animal Nutrition, 102(1), 5-16. DOI: https://doi.org/10.1111/jpn.12654
Ademiluyi, A.O., Oyeniran, O.H., Jimoh, T.O., Oboh, G., Boligon, A.A., 2019. Fluted pumpkin (Telfairia occidentalis) seed modulates some markers of erectile function in isolated rat’s corpus cavernosum: Influence of polyphenol and amino acid constituents. Journal of Food Biochemistry, 43(11), e13037. DOI: https://doi.org/10.1111/jfbc.13037
Adnan, M., Gul, S., Batool, S., Fatima, B., Rehman, A., Yaqoob, S., Aziz, M.A., 2017. A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. The Journal of Phytopharmacology, 6(2), 133-139. DOI: https://doi.org/10.31254/phyto.2017.6211
Adsul, S., Madkaikar, V., 2021. Pumpkin (Cucurbita pepo) Seed. In Oilseeds: Health Attributes and Food Applications (pp. 473-506). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-4194-0_19
Afzal, B., Pasha, I., Zahoor, T., Nawaz, H., 2016. Nutritional potential of fenugreek supplemented bread with special reference to antioxidant profiling. Pakistan Journal of Agricultural Sciences, 53(1), 217-223. DOI: https://doi.org/10.21162/PAKJAS/16.4664
Ahmad, A., Jan, B.L., Raish, M., Alkharfy, K.M., Ahad, A., Khan, A., Hamidaddin, M.A.A., 2018. Inhibitory effects of Lepidium sativum polysaccharide extracts on TNF-α production in Escherichia coli-stimulated mouse. 3 Biotech, 8(6), 1-8. DOI: https://doi.org/10.1007/s13205-018-1309-9
Akbar, S., 2020. Handbook of 200 medicinal plants: A comprehensive review of their traditional medical uses and scientific justifications. Springer. DOI: https://doi.org/10.1007/978-3-030-16807-0
Akinfenwa, A.O., Cheikhyoussef, A., Cheikhyoussef, N., Hussein, A.A., 2020. Cold pressed chia (Salvia hispanica L.) seed oil. In Cold Pressed Oils (pp. 181-190). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-818188-1.00015-3
Alamri, E., 2019. The Influence of Two Types of Chia Seed on Some Physiological Parameters in Diabetic Rats. International Journal of Pharmaceutical Research & Allied Sciences, 8(3), 131-136.
Al-Fuhaid, N., 2018. Can a Garden Cress (Lepidium sativum: Cruciferae) Seeds be a Poisonous Bait for the Larvae of Trogoderma granarium Everts?. World Journal of Agricultural Research, 6(2), 31-36. DOI: https://doi.org/10.12691/wjar-6-2-1
Alharbi, F.K., Hanan, M.S., 2017. Influence of dietary supplementation of Garden cress (Lepidium sativum L.) on histopathology and serum biochemistry in Diabetic Rats. Egyptian Journal of Chemistry and Environmental Health, 3(1), 1-19.
Almatroodi, S.A., Almatroudi, A., Alsahli, M.A., Rahmani, A.H., 2021. Fenugreek (Trigonella Foenum-Graecum) and its Active Compounds: A Review of its Effects on Human Health through Modulating Biological Activities. Pharmacognosy Journal, 13(3), 813–821. DOI: https://doi.org/10.5530/pj.2021.13.103
Al-Okbi, S.Y., Mohamed, D.A., Hamed, T.E.S., Kassem, A.A., Abd El-Alim, S.H., Mostafa, D.M., 2017. Enhanced prevention of progression of non alcoholic fatty liver to steatohepatitis by incorporating pumpkin seed oil in nanoemulsions. Journal of Molecular Liquids, 225, 822-832. DOI: https://doi.org/10.1016/j.molliq.2016.10.138
Alqahtani, F.Y., Aleanizy, F.S., Mahmoud, A.Z., Farshori, N.N., Alfaraj, R., Al-Sheddi, E.S., Alsarra, I.A., 2019. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi Journal of Biological Sciences, 26(5), 1089-1092. DOI: https://doi.org/10.1016/j.sjbs.2018.05.007
Alshammari, G.M., Balakrishnan, A., 2019. Pumpkin (Cucurbita ficifolia Bouché) extract attenuate the adipogenesis in human mesenchymal stem cells by controlling adipogenic gene expression. Saudi Journal of Biological Sciences, 26(4), 744-751. DOI: https://doi.org/10.1016/j.sjbs.2018.10.002
Alsieni, M.A., El Rabey, H.A., Al-Sieni, A.I., Al-Seeni, M.N., 2021. Comparison between the Antioxidant and Antidiabetic Activity of Fenugreek and Buckthorn in Streptozotocin-Induced Diabetic Male Rats. BioMed Research International, 2021, 1-12. DOI: https://doi.org/10.1155/2021/7202447
Al-Snafi, A.E., 2019. Chemical constituents and pharmacological effects of Lepidium sativum-A Review. International Journal of Current Pharmaceutical Research, 11(6), 1-10. DOI: https://doi.org/10.22159/ijcpr.2019v11i6.36338
Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M.W., Hamar, A., Khajehei, F., Piatti, C., 2020. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “Golden Grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 9(2), 216. DOI: https://doi.org/10.3390/foods9020216
Bakhtavar, M.A., Afzal, I., 2020. Climate smart Dry Chain Technology for safe storage of quinoa seeds. Scientific Reports, 10(1), 1-12. DOI: https://doi.org/10.1038/s41598-020-69190-w
Balgoon, M.J., 2019. Assessment of the protective effect of Lepidium sativum against aluminum-induced liver and kidney effects in albino rat. BioMed Research International, 2019. DOI: https://doi.org/10.1155/2019/4516730
Baregama, C., Goyal, A., 2019. Phytoconstituents, pharmacological activity, and medicinal use of Lepidium sativum Linn.: A review. Asian Journal of Pharmaceutical and Clinical Research, 12(4), 45-50. DOI: https://doi.org/10.22159/ajpcr.2019.v12i4.31292
Bezerraa, K.G., Durvala, I.J., Silvab, I.A., Fabiola, C.G., 2020. Emulsifying capacity of biosurfactants from Chenopodium quinoa and Pseudomonas aeruginosa UCP 0992 with focus of application in the cosmetic Industry. Chemical Engineering Transactions, 79, 211-216.
Blüher, M., 2019. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5), 288-298. DOI: https://doi.org/10.1038/s41574-019-0176-8
Buitrago, D., Buitrago-Villanueva, I., Barbosa-Cornelio, R., Coy-Barrera, E., 2019. Comparative Examination of Antioxidant Capacity and Fingerprinting of Unfractionated Extracts from Different Plant Parts of Quinoa (Chenopodium quinoa) Grown under Greenhouse Conditions. Antioxidants, 8(8), 238. DOI: https://doi.org/10.3390/antiox8080238
Burrieza, H.P., Rizzo, A.J., Vale, E.M., Silveira, V., Maldonado, S., 2019. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chemistry, 293, 299-306. DOI: https://doi.org/10.1016/j.foodchem.2019.04.098
Capraro, J., De Benedetti, S., Di Dio, M., Bona, E., Abate, A., Corsetto, P.A., Scarafoni, A., 2020. Characterization of Chenopodin Isoforms from Quinoa Seeds and Assessment of Their Potential Anti-Inflammatory Activity in Caco-2 Cells. Biomolecules, 10(5), 795. DOI: https://doi.org/10.3390/biom10050795
Carciochi, R.A., Manrique, G.D., Dimitrov, K., 2014. Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). International Food Research Journal, 21, 767-773.
Caruso, M.C., Favati, F., Di Cairano, M., Galgano, F., Labella, R., Scarpa, T., Condelli, N., 2018. Shelf-life evaluation and nutraceutical properties of chia seeds from a recent long-day flowering genotype cultivated in Mediterranean area. LWT Food Science and Technology, 87, 400-405. DOI: https://doi.org/10.1016/j.lwt.2017.09.015
Chooi, Y.C., Ding, C., Magkos, F., 2019. The epidemiology of obesity. Metabolism: Clinical and Experimental, 92, 6-10. DOI: https://doi.org/10.1016/j.metabol.2018.09.005
Cragg, G.M., Newman, D.J., 2013. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670-3695. DOI: https://doi.org/10.1016/j.bbagen.2013.02.008
da Silva, B.P., Toledo, R.C.L., Grancieri, M., de Castro Moreira, M.E., Medina, N.R., Silva, R.R., Martino, H.S.D., 2019. Effects of chia (Salvia hispanica L.) on calcium bioavailability and inflammation in Wistar rats. Food Research International, 116, 592-599. DOI: https://doi.org/10.1016/j.foodres.2018.08.078
de Falco, B., Amato, M., Lanzotti, V., 2017. Chia seeds products: an overview. Phytochemistry Reviews, 16, 745-760. DOI: https://doi.org/10.1007/s11101-017-9511-7
Desai, S.S., Walvekar, M.V., Shaikh, N.H., 2017. Cytoprotective effects of Lepidium sativum seed extract on liver and pancreas of HFD/STZ induced type 2 diabetic mice. International Journal of Pharmacognosy and Phytochemistry Research, 9i 502-507. DOI: https://doi.org/10.25258/phyto.v9i4.8121
Dong, X.J., Chen, J.Y., Chen, S.F., Li, Y., Zhao, X.J., 2021. The composition and anti-inflammatory properties of pumpkin seeds. Journal of Food Measurement and Characterization, 15(2), 1834-1842. DOI: https://doi.org/10.1007/s11694-020-00783-9
Dotto, J.M., Chacha, J.S., 2020. The potential of pumpkin seeds as a functional food ingredient: a review. Scientific African, 10, e00575. DOI: https://doi.org/10.1016/j.sciaf.2020.e00575
El Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., El Kacimi, K., Yasri, A., 2020. An insight into saponins from quinoa (Chenopodium quinoa Willd): a review. Molecules, 25(5), 1059. DOI: https://doi.org/10.3390/molecules25051059
Ellulu, M.S., Patimah, I., Khaza’ai, H., Rahmat, A., Abed, Y., 2017. Obesity and inflammation: the linking mechanism and the complications. Archives of Medical Science: AMS, 13(4), 851-863. DOI: https://doi.org/10.5114/aoms.2016.58928
Elshawwa, M.M., 2020. Correlation between Serum and Tissue Levels of Adipokines in Obesity in Adult Male Rats with and without Antioxidant. QJM: An International Journal of Medicine, 113(Supplement_1), 113-114. DOI: https://doi.org/10.1093/qjmed/hcaa065.011
Felemban, L.F., Al-Attar, A.M., Zeid, I.M.A., 2020. Medicinal and Nutraceutical Benefits of Chia Seed (Salvia hispanica). Journal of Pharmaceutical Research International, 15-26. DOI: https://doi.org/10.9734/jpri/2020/v32i4131040
Feng, T., Liu, P., Zhang, Z., Hu, J., Kong, Z., 2016. Combination of DFP and taurine counteracts the aluminum-induced alterations in oxidative stress and ATPase in cortex and blood of rats. Biological Trace Element Research, 174(1), 142-149. DOI: https://doi.org/10.1007/s12011-016-0692-5
Fernández-López, J., Viuda-Martos, M., Sayas-Barberá, M.E., Navarro-Rodríguez de Vera, C., Lucas-González, R., Roldán-Verdú, A., Botella-Martínez, C., Pérez-Alvarez, J.A., 2020. Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. Plants, 9, 1359. DOI: https://doi.org/10.3390/plants9101359
Foucault, A.S., Mathé, V., Lafont, R., Even, P., Dioh, W., Veillet, S., Quignard‐Boulangé, A., 2012. Quinoa extract enriched in 20‐hydroxyecdysone protects mice from diet‐induced obesity and modulates adipokines expression. Obesity, 20(2), 270-277. DOI: https://doi.org/10.1038/oby.2011.257
Garcia-Mazcorro, J.F., Mills, D.A., Murphy, K., Noratto, G., 2018. Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. European Journal of Nutrition, 57(7), 2513-2528. DOI: https://doi.org/10.1007/s00394-017-1523-y
Gazem, R.A.A., Chandrashekariah, S.A., 2016. Pharmacological properties of Salvia hispanica (chia) seeds: a review. Journal of Critical Reviews, 3(3), 63-67.
Ghahremanloo, A., Hajipour, R., Hemmati, M., Moossavi, M., Mohaqiq, Z., 2018. The beneficial effects of pumpkin extract on atherogenic lipid, insulin resistance and oxidative stress status in high-fat diet-induced obese rats. Journal of Complementary and Integrative Medicine, 15(2), 1-7. DOI: https://doi.org/10.1515/jcim-2017-0051
Gokavi, S.S., Malleshi, N.G., Guo, M., 2004. Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods for Human Nutrition, 59(3), 105-111. DOI: https://doi.org/10.1007/s11130-004-4308-4
Gomez, G., 2017. US Health Policy and Prescription Drug Coverage for FDA-Approved Obesity Medications (Doctoral dissertation, Harvard University). DOI: https://doi.org/10.1038/ijo.2017.287
Graf, B.L., Rojas‐Silva, P., Rojo, L.E., Delatorre‐Herrera, J., Baldeón, M.E., Raskin, I., 2015. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14(4), 431-445. DOI: https://doi.org/10.1111/1541-4337.12135
Grancieri, M., Martino, H.S.D., Gonzalez de Mejia, E., 2021. Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting PPARγ and NF-κB Pathways in 3T3L-1 Adipocytes. Nutrients, 13(1), 176. DOI: https://doi.org/10.3390/nu13010176
Gurunath, S., 2019. Antihypertensive and Hypocholesterolemic Activity of a Novel Herbal Formulation of Fenugreek, Cumin and Ajowan in Rats. Journal of Exploratory Research in Pharmacology, 4(4), 41-47. DOI: https://doi.org/10.14218/JERP.2019.00011
Han, K., Li, X.Y., Zhang, Y.Q., He, Y.L., Hu, R., Lu, X.L., Hui, J., 2020. Chia Seed Oil Prevents High Fat Diet Induced Hyperlipidemia and Oxidative Stress in Mice. European Journal of Lipid Science and Technology, 122(4), 1900443. DOI: https://doi.org/10.1002/ejlt.201900443
Hernández-Pérez, T., Valverde, M.E., Paredes-López, O., 2021. Seeds from ancient food crops with the potential for antiobesity promotion. Critical Reviews in Food Science and Nutrition, 1-8. DOI: https://doi.org/10.1080/10408398.2021.1877107
Hirich, A., Choukr-Allah, R., Ragab, R., 2020. Emerging Research in Alternative Crops. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-90472-6
Hussain, M.S., Hossain, M.S., Rashid, M.M.O., 2019. Antiobesity and Lipid Lowering Activitiy of Vigna unguiculata (L) Walp. Seed in High Fat Diet Induced Obese Mice. Journal of Pharmacy and Nutrition Sciences, 9, 000-000. DOI: https://doi.org/10.29169/1927-5951.2019.09.04.6
Jain, T., Grover, K., 2018. A comprehensive review on the nutritional and nutraceutical aspects of garden cress (Lepidium sativum Linn.). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(3), 829-836. DOI: https://doi.org/10.1007/s40011-016-0775-2
Jhajhria, A., Kumar, K., 2016. Fenugreek with its medicinal applications. International Journal of Pharmaceutical Sciences Review and Research, 41(1), 194-201.
Joebstl, D., Bandoniene, D., Meisel, T., Chatzistathis, S., 2010 Identification of the geographical origin of pumpkin seed oil by the use of rare earth elements and discriminant analysis. Food Chemistry, 123, 1303-1309. DOI: https://doi.org/10.1016/j.foodchem.2010.06.009
Kalaivani, A., Sathibabu Uddandrao, V.V., Brahmanaidu, P., Saravanan, G., Nivedha, P.R., Tamilmani, P., Vadivukkarasi, S., 2018. Anti obese potential of Cucurbita maxima seeds oil: effect on lipid profile and histoarchitecture in high fat diet induced obese rats. Natural Product Research, 32(24), 2950-2953. DOI: https://doi.org/10.1080/14786419.2017.1389939
Kalaivani, A., Vadivukkarasi, S., Uddandrao, V.S., Saravanan, G., 2020. Attenuation of obesity-associated oxidative stress by Cucurbita maxima seed oil in high fat diet-induced obese rats. In Pathophysiology of Obesity-Induced Health Complications (pp. 305-316). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-35358-2_18
Kandhare, A.D., Bandyopadhyay, D., Thakurdesai, P.A., 2018. Low molecular weight galactomannans-based standardized fenugreek seed extract ameliorates high-fat diet-induced obesity in mice via modulation of FASn, IL-6, leptin, and TRIP-Br2. RSC Advances, 8(57), 32401-32416. DOI: https://doi.org/10.1039/C8RA05204B
Katunzi-Kilewela, A., Kaale, L.D., Kibazohi, O., Rweyemamu, L.M., 2021. Nutritional, health benefits and usage of chia seeds (Salvia hispanica): A review. African Journal of Food Science, 15(2), 48-59. DOI: https://doi.org/10.5897/AJFS2020.2015
Kaur, S., Panghal, A., Garg, M.K., Mann, S., Khatkar, S.K., Sharma, P., Chhikara, N., 2019. Functional and nutraceutical properties of pumpkin–a review. Nutrition & Food Science, 50, 384-401. DOI: https://doi.org/10.1108/NFS-05-2019-0143
Khound, R., Shen, J., Song, Y., Santra, D., Su, Q., 2018. Phytoceuticals in fenugreek ameliorate VLDL overproduction and insulin resistance via the insig signaling pathway. Molecular Nutrition & Food Research, 62(5), 1700541. DOI: https://doi.org/10.1002/mnfr.201700541
Kimbonguila, A., Matos, L., Petit, J., Scher, J., Nzikou, J.M., 2019. Effect of physical treatment on the physicochemical, rheological and functional properties of yam meal of the cultivar “Ngumvu” from Dioscorea alata L. of Congo. International Journal of Recent Scientific Research, 8, 22213-22217.
Knez Hrnčič, M., Ivanovski, M., Cör, D., Knez, Ž., 2020. Chia Seeds (Salvia hispanica L.): an overview—phytochemical profile, isolation methods, and application. Molecules, 25(1), 11. DOI: https://doi.org/10.3390/molecules25010011
Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., Gramza-Michałowska, A., 2019. The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients, 11(6), 1242. DOI: https://doi.org/10.3390/nu11061242
Kushawaha, D.K., Yadav, M., Chatterji, S., Srivastava, A.K., Watal, G., 2017. Evidence based study of antidiabetic potential of C. maxima seeds–In vivo. Journal of Traditional and Complementary Medicine, 7(4), 466-470. DOI: https://doi.org/10.1016/j.jtcme.2016.12.001
L’hadj, I., Azzi, R., Lahfa, F., Koceir, E.A., Omari, N., 2019. The nutraceutical potential of Lepidium sativum L. seed flavonoid‐rich extract in managing metabolic syndrome components. Journal of Food Biochemistry, 43(3), e12725. DOI: https://doi.org/10.1111/jfbc.12725
Lahiri, B., Rani, R., 2020. Garden Cress Seeds: chemistry, medicinal properties, application in dairy and food industry: A Review. Emergent Life Sciences Research, 6, 1-4.
Liu, M., Zhu, K., Yao, Y., Chen, Y., Guo, H., Ren, G., Li, J., 2020. Antioxidant, anti‐inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry, 97(3), 703-713. DOI: https://doi.org/10.1002/cche.10286
Lu, A., Yu, M., Fang, Z., Xiao, B., Guo, L., Wang, W., Zhang, Y., 2019. Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. International Journal of Biological Macromolecules, 121, 261-269. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.158
Mala, S.K., Aathira, P., Anjali, E.K., Srinivasulu, K., Sulochanamma, G., 2018. Effect of pumpkin powder incorporation on the physico-chemical, sensory and nutritional characteristics of wheat flour muffins. International Food Research Journal, 25(3), 1081-1087.
Marcinek, K., Krejpcio, Z., 2017. Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications-a review. Roczniki Państwowego Zakładu Higieny, 68(2), 123-129.
Marrelli, M., Statti, G., Conforti, F., 2020. A review of biologically active natural products from Mediterranean wild edible plants: benefits in the treatment of obesity and its related disorders. Molecules, 25(3), 649. DOI: https://doi.org/10.3390/molecules25030649
Melo, D., Machado, T.B., Oliveira, M.B.P., 2019. Chia seeds: an ancient grain trending in modern human diets. Food & Function, 10(6), 3068-3089. DOI: https://doi.org/10.1039/C9FO00239A
Mohamadi, N., Sharififar, F., Pournamdari, M., Ansari, M., 2018. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. Journal of Dietary Supplements, 15(2), 207-222. DOI: https://doi.org/10.1080/19390211.2017.1329244
Monteiro, C.A., Cannon, G.J., 2019. The role of the transnational ultra-processed food industry in the pandemic of obesity and its associated diseases: problems and solutions. World Nutrition, 10(1), 89-99. DOI: https://doi.org/10.26596/wn.201910189-99
Montesano, D., Blasi, F., Simonetti, M.S., Santini, A., Cossignani, L., 2018. Chemical and nutritional characterization of seed oil from Cucurbita maxima L.(var. Berrettina) pumpkin. Foods, 7(3), 30. DOI: https://doi.org/10.3390/foods7030030
Moreno-Valdespino, C.A., Luna-Vital, D., Camacho-Ruiz, R.M., Mojica, L., 2020. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Research International, 130, 108905. DOI: https://doi.org/10.1016/j.foodres.2019.108905
Mukthamba, P., Srinivasan, K., 2016. Hypolipidemic and antioxidant effects of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) in high-fat fed rats. Food Bioscience, 14, 1-9. DOI: https://doi.org/10.1016/j.fbio.2016.01.002
Navruz-Varli, S., Sanlier, N., 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371-376. DOI: https://doi.org/10.1016/j.jcs.2016.05.004
Ng, C.Y., Wang, M., 2021. The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: A review. Food Frontiers, 2(3), 329-356. DOI: https://doi.org/10.1002/fft2.109
Noratto, G.D., Murphy, K., Chew, B.P., 2019. Quinoa intake reduces plasma and liver cholesterol, lessens obesity-associated inflammation, and helps to prevent hepatic steatosis in obese db/db mouse. Food Chemistry, 287, 107-114. DOI: https://doi.org/10.1016/j.foodchem.2019.02.061
Nowak, V., Du, J., Charrondière, U.R., 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47-54. DOI: https://doi.org/10.1016/j.foodchem.2015.02.111
Obaroakpo, J.U., Nan, W., Hao, L., Liu, L., Zhang, S., Lu, J., Lv, J., 2020. The hyperglycemic regulatory effect of sprouted quinoa yoghurt in high-fat-diet and streptozotocin-induced type 2 diabetic mice via glucose and lipid homeostasis. Food & Function, 11(9), 8354-8368. DOI: https://doi.org/10.1039/D0FO01575J
Oliva, M.E., del Rosario Ferreira, M., Joubert, M.B.V., D'Alessandro, M.E., 2021. Salvia hispanica L.(chia) seed promotes body fat depletion and modulates adipocyte lipid handling in sucrose-rich diet-fed rats. Food Research International, 139, 109842. DOI: https://doi.org/10.1016/j.foodres.2020.109842
Pachi, V.K., Mikropoulou, E.V., Gkiouvetidis, P., Siafakas, K., Argyropoulou, A., Angelis, A., Halabalaki, M., 2020. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. chia, Anacardiaceae): A review. Journal of Ethnopharmacology, 254, 112485. DOI: https://doi.org/10.1016/j.jep.2019.112485
Panchal, S.K., 2012. Cardioprotective and hepatoprotective effects of natural products in metabolic syndrome (Doctoral dissertation, University of Southern Queensland).
Paśko, P., Zagrodzki, P., Bartoń, H., Chłopicka, J., Gorinstein, S., 2010. Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods for Human Nutrition, 65(4), 333-338. DOI: https://doi.org/10.1007/s11130-010-0197-x
Patel, U., Kulkarni, M., Undale, V., Bhosale, A., 2009. Evaluation of diuretic activity of aqueous and methanol extracts of Lepidium sativum garden cress (Cruciferae) in rats. Tropical Journal of Pharmaceutical Research, 8(3). DOI: https://doi.org/10.4314/tjpr.v8i3.44536
Petersen, R., Pan, L., Blanck, H.M., 2019. Peer Reviewed: Racial and Ethnic Disparities in Adult Obesity in the United States: CDC’s Tracking to Inform State and Local Action. Preventing Chronic Disease, 16, 1-6. DOI: https://doi.org/10.5888/pcd16.180579
Rafińska, K., Pomastowski, P., Rudnicka, J., Krakowska, A., Maruśka, A., Narkute, M., Buszewski, B., 2019. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chemistry, 289, 16-25. DOI: https://doi.org/10.1016/j.foodchem.2019.03.025
Rafiqi, U.N., Gul, I., Saifi, M., Nasrullah, N., Ahmad, J., Dash, P., Abdin, M.Z., 2019. Cloning, identification, and in silico analysis of terpene synthases involved in the competing pathways of artemisinin biosynthesis pathway in Artemisia annua L. Pharmacognosy Magazine, 15(62), 38-46.
Raghavendra, R.H., Akhilender Naidu, K., 2011. Eugenol and n-3 rich garden cress seed oil as modulators of platelet aggregation and eicosanoids in Wistar albino rats. The Open Nutraceuticals Journal, 4(1), 144-150. DOI: https://doi.org/10.2174/1876396001104010144
Rajasree, R.S., Sibi, P.I., Francis, F., William, H., 2016. Phytochemicals of Cucurbitaceae family—A review. International Journal of Pharmacognosy and Phytochemical Research, 8(1), 113-123.
Ratnam, N., Naijibullah, M., Ibrahim, M.D., 2017. A review on Cucurbita pepo. International Journal of Pharmacognosy and Phytochemical Research, 9, 1190-1194. DOI: https://doi.org/10.25258/phyto.v9i09.10305
Rodríguez-Pérez, C., Segura-Carretero, A., del Mar Contreras, M., 2019. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Critical Reviews in Food Science and Nutrition, 59(8), 1212-1229. DOI: https://doi.org/10.1080/10408398.2017.1399859
Roughani, A., Miri, S.M., 2018. Lepidium species as antidiabetic herbal medicines. In The First National Congress and International Fair of Medicinal Plants and Strategies for Persian Medicine that Affect Diabetes (pp. 9-11).
Rubavathi, S., Ayyappadasan, G., Sangeetha, N., Harini, T., Saranya, D., Harshapradha, P., 2020. Studies on Antioxidant and Anti-obesity Activity of Salvia hispanica (Chia) Seeds Extracts. Journal of Drug Delivery and Therapeutics, 10(3-s), 98-106. DOI: https://doi.org/10.22270/jddt.v10i3-s.4169
Ruiz, A., Espinosa, B., Guillén, G., 2017. Effect of quinua (Chenopodium quinoa) consumption as a coadjuvant in nutritional intervention in prediabetic subjects. Nutricion Hospitalaria, 34(5), 1163-1169.
Saxena, S., Shahani, L., Bhatnagar, P., 2017. Hepatoprotective effect of Chenopodium quinoa seed against CCL4-induced liver toxicity in Swiss albino male mice. Asian Journal of Pharmaceutical and Clinical Research, 10(11), 273-276. DOI: https://doi.org/10.22159/ajpcr.2017.v10i11.20918
Scapin, G., Schmidt, M.M., Prestes, R.C., Rosa, C.S., 2016. Phenolics compounds, flavonoids and antioxidant activity of chia seed extracts (Salvia hispanica) obtained by different extraction conditions. International Food Research Journal, 23(6), 2341-2346.
Shah, M.B., Dudhat, V.A., Gadhvi, K.V., 2021. Lepidium sativum: A potential functional food. Journal of Ayurvedic and Herbal Medicine, 7(2), 140-149. DOI: https://doi.org/10.31254/jahm.2021.7213
Sharma, P., Kaur, G., Kehinde, B.A., Chhikara, N., Panghal, A., Kaur, H., 2020. Pharmacological and biomedical uses of extracts of pumpkin and its relatives and applications in the food industry: a review. International Journal of Vegetable Science, 26(1), 79-95. DOI: https://doi.org/10.1080/19315260.2019.1606130
Shende, P., Narvenker, R., 2020. Herbal nanotherapy: A new paradigm over conventional obesity treatment. Journal of Drug Delivery Science and Technology, 102291. DOI: https://doi.org/10.1016/j.jddst.2020.102291
Srinivasan, K., 2019. Fenugreek (Trigonella foenum-graecum L.) seeds used as functional food supplements to derive diverse health benefits. In Nonvitamin and nonmineral nutritional supplements (pp. 217-221). Academic press. DOI: https://doi.org/10.1016/B978-0-12-812491-8.00031-X
Stikić, R.I., Milinčić, D.D., Kostić, A.Ž., Jovanović, Z.B., Gašić, U.M., Tešić, Ž.L., Pešić, M.B,. 2020. Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chemistry, 97(3), 626-633. DOI: https://doi.org/10.1002/cche.10278
Syed, Q.A., Akram, M., Shukat, R., 2019. Nutritional and therapeutic importance of the pumpkin seeds. Seed, 21(2), 15798-15803. DOI: https://doi.org/10.26717/BJSTR.2019.21.003586
Tamargo, A., Martin, D., Del Hierro, J.N., Moreno-Arribas, M.V., Muñoz, L.A., 2020. Intake of soluble fibre from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model simgi®. Food Research International, 137, 109364. DOI: https://doi.org/10.1016/j.foodres.2020.109364
Tang, Y., Tsao, R., 2017. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767. DOI: https://doi.org/10.1002/mnfr.201600767
Tavakoly, R., Maracy, M.R., Karimifar, M., Entezari, M.H., 2018. Does fenugreek (Trigonella foenum-graecum) seed improve inflammation, and oxidative stress in patients with type 2 diabetes mellitus? A parallel group randomized clinical trial. European Journal of Integrative Medicine, 18, 13-17. DOI: https://doi.org/10.1016/j.eujim.2018.01.005
Teng, C., Shi, Z., Yao, Y., Ren, G., 2020. Structural Characterization of Quinoa Polysaccharide and Its Inhibitory Effects on 3T3-L1 Adipocyte Differentiation. Foods, 9(10), 1511. DOI: https://doi.org/10.3390/foods9101511
Umesha, S.S., Naidu, K.A., 2015. Antioxidants and antioxidant enzymes status of rats fed on n-3 PUFA rich Garden cress (Lepidium sativum L) seed oil and its blended oils. Journal of Food Science and Technology, 52(4), 1993-2002. DOI: https://doi.org/10.1007/s13197-013-1196-3
Wu, Z., Cai, Y.S., Yuan, R., Wan, Q., Xiao, D., Lei, J., Yu, J., 2020. Bioactive pterocarpans from Trigonella foenum-graecum L. Food Chemistry, 313, 126092. DOI: https://doi.org/10.1016/j.foodchem.2019.126092
Yao, D., Zhang, B., Zhu, J., Zhang, Q., Hu, Y., Wang, S., Xiao, J., 2020. Advances on application of fenugreek seeds as functional foods: Pharmacology, clinical application, products, patents and market. Critical Reviews in Food Science and Nutrition, 60(14), 2342-2352. DOI: https://doi.org/10.1080/10408398.2019.1635567
Yao, Y., Zhu, Y., Gao, Y., Shi, Z., Hu, Y., Ren, G., 2015. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation. Food & Function, 6(10), 3282-3290. DOI: https://doi.org/10.1039/C5FO00716J
Yokoyama, S.I., Kodera, M., Hirai, A., Nakada, M., Ueno, Y., Osawa, T., 2020. Benzyl Isothiocyanate Produced by Garden Cress (Lepidium sativum) Prevents Accumulation of Hepatic Lipids. Journal of Nutritional Science and Vitaminology, 66(5), 481-487. DOI: https://doi.org/10.3177/jnsv.66.481
Zameer, S., Najmi, A.K., Vohora, D., Akhtar, M., 2018. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutritional Neuroscience, 21(8), 539-545. DOI: https://doi.org/10.1080/1028415X.2017.1327200
Zhou, C., Qin, Y., Chen, R., Gao, F., Zhang, J., Lu, F., 2020. Fenugreek attenuates obesity-induced inflammation and improves insulin resistance through downregulation of iRhom2/TACE. Life Sciences, 258, 118222. DOI: https://doi.org/10.1016/j.lfs.2020.118222
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Heba Hosny, Nayra Omran, Heba Handoussa
This work is licensed under a Creative Commons Attribution 4.0 International License.
The papers published in the International Journal of Plant Based Pharmaceuticals are licenced under Creative Commons Attribution 4.0 International Licence (CC BY).