Exploring the therapeutic potential of silver nanocomposition of Catharanthus roseus leaves extract for antimicrobial and antiviral activities: A pilot study


Abstract views: 146 / PDF downloads: 73

Authors

DOI:

https://doi.org/10.62313/ijpbp.2024.217

Keywords:

Catharanthus roseus, Silver nanoparticles, Antibacterial, Antifungal, Anti-HIV activity

Abstract

Silver nanoparticles (AgNPs) synthesized from natural sources offer promising solutions for combating microbial and viral infections. Catharanthus roseus (Periwinkle), renowned for its diverse pharmacological properties, provides a sustainable and eco-friendly method for producing AgNPs with significant antimicrobial and antiviral effects. This study explores the cytotoxic potential of AgNPs derived from C. roseus and their antibacterial, antifungal, and anti-HIV activities, highlighting the novelty of employing a green synthesis approach. AgNPs from C. roseus leaf extract (AgNP-CR) were synthesized and characterized using spectroscopic and microscopic techniques to determine their physicochemical properties. The antibacterial activity of AgNP-CR was assessed against clinically relevant bacterial strains, and antifungal activity was evaluated against common fungal pathogens. Additionally, anti-HIV activity was investigated through in vitro assays using HIV-infected cells. Results demonstrated significant antibacterial activity of AgNP-CR against both gram-positive and gram-negative bacteria. Furthermore, AgNP-CR exhibited antifungal activity against pathogenic Aspergillus species. Importantly, AgNP-CR showed promising anti-HIV activity by inhibiting viral replication and cytopathic effects in infected cells. Cytotoxicity assays were also conducted to ensure the safety profile of the nanoparticles. Overall, this pilot study underscores the therapeutic potential of AgNPs synthesized from C. roseus in addressing bacterial, fungal, and viral infections. Further research is warranted to elucidate their mechanisms of action and optimize formulations for clinical applications.

References

Appidi, J., Grierson, D., & Afolayan, A. (2008). Ethnobotanical study of plants used for the treatment of diarrhoea in the Eastern Cape, South Africa. Pakistan Journal of Biological Sciences, 11(15), 1961-1963. https://doi.org/10.3923/pjbs.2008.1961.1963 DOI: https://doi.org/10.3923/pjbs.2008.1961.1963

Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., & Shah, S. I. (2005). Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 5(2), 244-249. https://doi.org/10.1166/jnn.2005.034 DOI: https://doi.org/10.1166/jnn.2005.034

Bansal, Y., Mujib, A., Mamgain, J., Dewir, Y. H., & Rihan, H. Z. (2023). Phytochemical Composition and Detection of Novel Bioactives in Anther Callus of Catharanthus roseus L. Plants, 12(11), 2186. https://doi.org/10.3390/plants12112186 DOI: https://doi.org/10.3390/plants12112186

Bhardwaj, B., Singh, P., Kumar, A., Kumar, S., & Budhwar, V. (2020). Eco-friendly greener synthesis of nanoparticles. Advanced Pharmaceutical Bulletin, 10(4), 566-576. https://doi.org/10.34172/apb.2020.067 DOI: https://doi.org/10.34172/apb.2020.067

Bidaud, A. L., Schwarz, P., Herbreteau, G., & Dannaoui, E. (2021). Techniques for the assessment of in vitro and in vivo antifungal combinations. Journal of Fungi, 7(2), 113. https://doi.org/10.3390/jof7020113 DOI: https://doi.org/10.3390/jof7020113

Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13), 7202. https://doi.org/10.3390/ijms22137202 DOI: https://doi.org/10.3390/ijms22137202

Cavalieri, S. J. (2005). Manual of antimicrobial susceptibility testing: American Society for Microbiology.

Davis, M. E., Chen, Z., & Shin, D. M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug discovery, 7(9), 771-782. https://doi.org/10.1038/nrd2614 DOI: https://doi.org/10.1038/nrd2614

Gaikwad, S. Y., Phatak, P., & Mukherjee, A. (2023). Cutting edge strategies for screening of novel anti-HIV drug candidates against HIV infection: A concise overview of cell based assays. Heliyon, 9, e16027. https://doi.org/10.1016/j.heliyon.2023.e16027 DOI: https://doi.org/10.1016/j.heliyon.2023.e16027

Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), 382-386. https://doi.org/10.1016/j.nano.2009.06.005 DOI: https://doi.org/10.1016/j.nano.2009.06.005

Gavas, S., Quazi, S., & Karpiński, T. M. (2021). Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Research Letters, 16(1), 173. https://doi.org/10.1186/s11671-021-03628-6 DOI: https://doi.org/10.1186/s11671-021-03628-6

Jadaun, P., Seniya, C., Pal, S. K., Kumar, S., Kumar, P., Nema, V., Kulkarni, S. S., & Mukherjee, A. (2022). Elucidation of antiviral and antioxidant potential of C-phycocyanin against HIV-1 infection through in silico and in vitro approaches. Antioxidants, 11(10), 1942. https://doi.org/10.3390/antiox11101942 DOI: https://doi.org/10.3390/antiox11101942

Jadaun, P., Shah, P., Harshithkumar, R., Said, M. S., Bhoite, S. P., Bokuri, S., Ravindran, S., Mishra, N., & Mukherjee, A. (2023). Antiviral and ROS scavenging potential of Carica papaya Linn and Psidium guajava leaves extract against HIV-1 infection. BMC Complementary Medicine and Therapies, 23(1), 82. https://doi.org/10.1186/s12906-023-03916-x DOI: https://doi.org/10.1186/s12906-023-03916-x

Jian, Y., Chen, X., Ahmed, T., Shang, Q., Zhang, S., Ma, Z., & Yin, Y. (2022). Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. Journal of Advanced Research, 38, 1-12. https://doi.org/10.1016/j.jare.2021.09.006 DOI: https://doi.org/10.1016/j.jare.2021.09.006

Joshi, R., & Aithal, S. (2024). Characterization of silver nanoparticles synthesized by using Adathoda vesica and Catharanthus roseus leaves. BIOINFOLET-A Quarterly Journal of Life Sciences, 21(1), 149-151. http://dx.doi.org/10.5958/0976-4755.2024.00046.4 DOI: https://doi.org/10.5958/0976-4755.2024.00046.4

Kar, D., Bandyopadhyay, S., Dimri, U., Mondal, D. B., Nanda, P. K., Das, A. K., Batabyal, S., Dandapat, P., & Bandyopadhyay, S. (2016). Antibacterial effect of silver nanoparticles and capsaicin against MDR-ESBL producing Escherichia coli: an in vitro study. Asian Pacific Journal of Tropical Disease, 6(10), 807-810. https://doi.org/10.1016/S2222-1808(16)61135-0 DOI: https://doi.org/10.1016/S2222-1808(16)61135-0

Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., & Hwang, C. Y. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95-101. https://doi.org/10.1016/j.nano.2006.12.001 DOI: https://doi.org/10.1016/j.nano.2006.12.001

Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95-99. https://doi.org/10.1016/j.saa.2012.03.002 DOI: https://doi.org/10.1016/j.saa.2012.03.002

Lee, O. N., Ak, G., Zengin, G., Cziáky, Z., Jekő, J., Rengasamy, K. R., Park, H. Y., Kim, D. H., & Sivanesan, I. (2020). Phytochemical composition, antioxidant capacity, and enzyme inhibitory activity in callus, somaclonal variant, and normal green shoot tissues of Catharanthus roseus (L) G. Don. Molecules, 25(21), 4945. https://doi.org/10.3390/molecules25214945 DOI: https://doi.org/10.3390/molecules25214945

Luceri, A., Francese, R., Lembo, D., Ferraris, M., & Balagna, C. (2023). Silver nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms, 11(3), 629. https://doi.org/10.3390/microorganisms11030629 DOI: https://doi.org/10.3390/microorganisms11030629

Monteiro, D., Silva, S., Negri, M., Gorup, L., de Camargo, E., Oliveira, R., de Barros Barbosa, D., & Henriques, M. (2012). Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 54(5), 383-391. https://doi.org/10.1111/j.1472-765X.2012.03219.x DOI: https://doi.org/10.1111/j.1472-765X.2012.03219.x

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346. https://doi.org/10.1088/0957-4484/16/10/059 DOI: https://doi.org/10.1088/0957-4484/16/10/059

Mukunthan, K., Elumalai, E., Patel, T. N., & Murty, V. R. (2011). Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pacific Journal of Tropical Biomedicine, 1(4), 270-274. https://doi.org/10.1016/S2221-1691(11)60041-5 DOI: https://doi.org/10.1016/S2221-1691(11)60041-5

Mundekkad, D., & Cho, W. C. (2022). Nanoparticles in clinical translation for cancer therapy. International Journal of Molecular Sciences, 23(3), 1685. https://doi.org/10.3390/ijms23031685 DOI: https://doi.org/10.3390/ijms23031685

Mutalik, S. P., Gaikwad, S. Y., Fernandes, G., More, A., Kulkarni, S., Fayaz, S. M. A., Tupally, K., Parekh, H. S., Kulkarni, S., & Mukherjee, A. (2023). Anti-CD4 antibody and dendrimeric peptide based targeted nano-liposomal dual drug formulation for the treatment of HIV infection. Life Sciences, 334, 122226. https://doi.org/10.1016/j.lfs.2023.122226 DOI: https://doi.org/10.1016/j.lfs.2023.122226

Naumenko, K., Zahorodnia, S., Pop, C. V., & Rizun, N. (2023). Antiviral activity of silver nanoparticles against the influenza A virus. Journal of Virus Eradication, 9(2), 100330. https://doi.org/10.1016/j.jve.2023.100330 DOI: https://doi.org/10.1016/j.jve.2023.100330

Osman, A. I., Zhang, Y., Farghali, M., Rashwan, A. K., Eltaweil, A. S., El-Monaem, A., Eman, M., Mohamed, I., Badr, M. M., & Ihara, I. (2024). Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters, 22, 841-887. https://doi.org/10.1007/s10311-023-01682-3 DOI: https://doi.org/10.1007/s10311-023-01682-3

Paredes, D., Ortiz, C., & Torres, R. (2014). Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157: H7 and methicillin-resistant Staphylococcus aureus (MRSA). International Journal of Nanomedicine, 9, 1717-1729. https://doi.org/10.2147/IJN.S57156 DOI: https://doi.org/10.2147/IJN.S57156

Pham, H. N. T., Vuong, Q. V., Bowyer, M. C., & Scarlett, C. J. (2020). Phytochemicals derived from Catharanthus roseus and their health benefits. Technologies, 8(4), 80. https://doi.org/10.3390/technologies8040080 DOI: https://doi.org/10.3390/technologies8040080

Rakshit, S., More, A., Gaikwad, S., Seniya, C., Gade, A., Muley, V. Y., Mukherjee, A., & Kamble, K. (2024). Role of diosgenin extracted from Helicteres isora L in suppression of HIV-1 replication: An in vitro preclinical study. Heliyon, 10, e24350. https://doi.org/10.1016/j.heliyon.2024.e24350 DOI: https://doi.org/10.1016/j.heliyon.2024.e24350

Ratan, Z. A., Mashrur, F. R., Chhoan, A. P., Shahriar, S. M., Haidere, M. F., Runa, N. J., Kim, S., Kweon, D. H., Hosseinzadeh, H., & Cho, J. Y. (2021). Silver nanoparticles as potential antiviral agents. Pharmaceutics, 13(12), 2034. https://doi.org/10.3390/pharmaceutics13122034 DOI: https://doi.org/10.3390/pharmaceutics13122034

Sahoo, R., Jadhav, S., & Nema, V. (2023). Journey of technological advancements in the detection of antimicrobial resistance. Journal of the Formosan Medical Association, 123(4), 430-441. https://doi.org/10.1016/j.jfma.2023.08.008 DOI: https://doi.org/10.1016/j.jfma.2023.08.008

Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10(8), 1566. https://doi.org/10.3390/nano10081566 DOI: https://doi.org/10.3390/nano10081566

Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1-2), 83-96. https://doi.org/10.1016/j.cis.2008.09.002 DOI: https://doi.org/10.1016/j.cis.2008.09.002

Šileikaitė, A., Prosyčevas, I., Puišo, J., Juraitis, A., & Guobienė, A. (2006). Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Materials Science, 12(4), 287-291.

Sulaiman, G. M., Mohammad, A. A., Abdul-Wahed, H. E., & Ismail, M. M. (2013). Biosynthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Rosmarinus officinalis extract. Digest Journal of Nanomaterials and Biostructures, 8(1), 273-280.

Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6(2), 257-262. https://doi.org/10.1016/j.nano.2009.07.002 DOI: https://doi.org/10.1016/j.nano.2009.07.002

Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 15, 2555-2562. https://doi.org/10.2147/IJN.S246764 DOI: https://doi.org/10.2147/IJN.S246764

Downloads

Published

26.06.2024

How to Cite

Joshi, R., Aithal, S., More, A., Nema, V., & Mukherjee, A. (2024). Exploring the therapeutic potential of silver nanocomposition of Catharanthus roseus leaves extract for antimicrobial and antiviral activities: A pilot study. International Journal of Plant Based Pharmaceuticals, 4(2), 101–109. https://doi.org/10.62313/ijpbp.2024.217

Issue

Section

Research Articles
Received 2024-04-12
Accepted 2024-06-22
Published 2024-06-26