Anthocyanins: Plant-based flavonoid pigments with diverse biological activities


Abstract views: 736 / PDF downloads: 190

Authors

  • Sandip Patra National Institute of Pharmaceutical Education and Research (NIPER), Department of Medicinal Chemistry, Hyderabad 500037, India https://orcid.org/0000-0002-9679-3580
  • Priyanka N. Makhal National Institute of Pharmaceutical Education and Research (NIPER), Department of Medicinal Chemistry, Hyderabad 500037, India https://orcid.org/0000-0003-0833-8738
  • Shubham Jaryal Ind-Swift Laboratories Limited, Mohali, Punjab 160055, India https://orcid.org/0000-0001-5179-9519
  • Nilesh More National Institute of Pharmaceutical Education and Research (NIPER), Department of Medicinal Chemistry, Hyderabad 500037, India https://orcid.org/0000-0002-2189-2859
  • Venkata Rao Kaki National Institute of Pharmaceutical Education and Research (NIPER), Department of Medicinal Chemistry, Hyderabad 500037, India https://orcid.org/0000-0002-2840-861X

DOI:

https://doi.org/10.62313/ijpbp.2022.22

Keywords:

Anthocyanins, Natural pigments, Antioxidants, Cardiovascular protecting agents, Neuroprotective agents

Abstract

Anthocyanins are flavonoid containing polyphenolic phytochemicals. They are widely present in plants and accounts for different color shades displayed by the plant organs. A broad range of health-revitalizing effects is attributed to anthocyanins, constituting a vital part of the human diet. They are also accountable for ameliorating the detrimental effects of various lifestyle diseases, including cancer, cardiovascular disorders, neurological disorders, etc. These beneficial impacts highly depend on the bioavailability of anthocyanins, governed by their absorption and metabolism in the human body. The primary goal of this review is to summarize the latest anthocyanin knowledge while focusing on the chemistry, pharmacokinetics, and various biological advantages with anti-cancer, neuroprotective, antidiabetic, antioxidant, cardiovascular protective, vision improvement, antiviral, and antimicrobial effects.

References

Airoldi, C., La Ferla, B., D'Orazio, G., Ciaramelli, C., Palmioli, A., 2018. Flavonoids in the treatment of Alzheimer's and other neurodegenerative diseases. Current Medicinal Chemistry, 25(27), 3228-3246. DOI: https://doi.org/10.2174/0929867325666180209132125

Al-Awwadi, N.A., Araiz, C., Bornet, A., Delbosc, S., Cristol, J.P., Linck, N., Cros, G., 2005. Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats. Journal of Agricultural and Food Chemistry, 53(1), 151-157. DOI: https://doi.org/10.1021/jf048919f

Ali, T., Kim, T., Rehman, S.U., Khan, M.S., Amin, F.U., Khan, M., Kim, M.O., 2018. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Molecular Neurobiology, 55(7), 6076-6093. DOI: https://doi.org/10.1007/s12035-017-0798-6

Alvarez-Suarez, J.M., Giampieri, F., Tulipani, S., Casoli, T., Di Stefano, G., González-Paramás, A.M., Battino, M., 2014. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. The Journal of Nutritional Biochemistry, 25(3), 289-294. DOI: https://doi.org/10.1016/j.jnutbio.2013.11.002

Andriambeloson, E., Magnier, C., Haan-Archipoff, G., Lobstein, A., Anton, R., Beretz, A., Andriantsitohaina, R., 1998. Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. The Journal of Nutrition, 128(12), 2324-2333. DOI: https://doi.org/10.1093/jn/128.12.2324

Aqil, F., Gupta, A., Munagala, R., Jeyabalan, J., Kausar, H., Sharma, R.J., Gupta, R.C., 2012. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L.(Jamun, the Indian Blackberry). Nutrition and Cancer, 64(3), 428-438. DOI: https://doi.org/10.1080/01635581.2012.657766

Aqil, F., Vadhanam, M.V., Jeyabalan, J., Cai, J., Singh, I.P., upta, R.C., 2014. Detection of anthocyanins/anthocyanidins in animal tissues. Journal of Agricultural and Food Chemistry, 62(18), 3912-3918. DOI: https://doi.org/10.1021/jf500467b

Bell, D.R., Gochenaur, K., 2006. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. Journal of Applied Physiology, 100(4), 1164-1170. DOI: https://doi.org/10.1152/japplphysiol.00626.2005

Bensalem, J., Dal-Pan, A., Gillard, E., Calon, F., Pallet, V., 2015. Protective effects of berry polyphenols against age-related cognitive impairment. Nutrition and Aging, 3(2-4), 89-106. DOI: https://doi.org/10.3233/NUA-150051

Bertuglia, S., Malandrino, S., Colantuoni, A., 1995. Effect of Vaccinium myrtillus anthocyanosides on ischaemia reperfusion injury in hamster cheek pouch microcirculation. Pharmacological Research, 31(3-4), 183-187. DOI: https://doi.org/10.1016/1043-6618(95)80016-6

Blaut, M., Clavel, T., 2007. Metabolic diversity of the intestinal microbiota: implications for health and disease. The Journal of Nutrition, 137(3), 751S-755S. DOI: https://doi.org/10.1093/jn/137.3.751S

Borkowski, T., Szymusiak, H., Gliszczyńska-Świgło, A., Rietjens, I.M., Tyrakowska, B., 2005. Radical scavenging capacity of wine anthocyanins is strongly pH-dependent. Journal of Agricultural and Food Chemistry, 53(14), 5526-5534. DOI: https://doi.org/10.1021/jf0478556

Burdulis, D., Sarkinas, A., Jasutiene, I., Stackevicené, E., Nikolajevas, L., Janulis, V., 2009. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Poloniae Pharmaceutica, 66(4), 399-408.

Calderaro, A., Barreca, D., Bellocco, E., Smeriglio, A., Trombetta, D., Laganà, G., 2020. Colored phytonutrients: role and applications in the functional foods of anthocyanins. In Phytonutrients in Food (pp. 177-195). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-815354-3.00011-3

Camire, M.E., 2000. Bilberries and blueberries as functional foods and nutraceuticals. Functional Foods: Herbs, Botanicals and Teas. Lancaster: Technomic Publishing, pp. 289-319.

Cao, H., Ou, J., Chen, L., Zhang, Y., Szkudelski, T., Delmas, D., Xiao, J., 2019. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Critical Reviews in Food Science and Nutrition, 59(20), 3371-3379. DOI: https://doi.org/10.1080/10408398.2018.1492900

Cao, W., Konsolaki, M., 2011. FKBP immunophilins and Alzheimer’s disease: a chaperoned affair. Journal of Biosciences, 36(3), 493-498. DOI: https://doi.org/10.1007/s12038-011-9080-7

Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A., 2009. Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871. DOI: https://doi.org/10.1016/j.foodchem.2008.09.001

Chen, Z., Wang, C., Pan, Y., Gao, X., Chen, H., 2018. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food & Function, 9(1), 426-439. DOI: https://doi.org/10.1039/C7FO00983F

Clifford, M.N., 2000. Anthocyanins–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1063-1072. DOI: https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q

Correia, P., Araújo, P., Ribeiro, C., Oliveira, H., Pereira, A.R., Mateus, N., Fernandes, I., 2021. Anthocyanin-related pigments: Natural allies for skin health maintenance and protection. Antioxidants, 10(7), 1038. DOI: https://doi.org/10.3390/antiox10071038

da Costa, C.T., Horton, D., Margolis, S.A., 2000. Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography–mass spectrometry and capillary electrophoresis. Journal of Chromatography A, 881(1-2), 403-410. DOI: https://doi.org/10.1016/S0021-9673(00)00328-9

Damrongrungruang, T., Paphangkorakit, J., Limsitthichaikoon, S., Khampaenjiraroch, B., Davies, M.J., Sungthong, B., Priprem, A., 2021. Anthocyanin complex niosome gel accelerates oral wound healing: In vitro and clinical studies. Nanomedicine: Nanotechnology, Biology and Medicine, 37, 102423. DOI: https://doi.org/10.1016/j.nano.2021.102423

De Ferrars, R.M., Czank, C., Zhang, Q., Botting, N.P., Kroon, P.A., Cassidy, A., Kay, C.D., 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology, 171(13), 3268-3282. DOI: https://doi.org/10.1111/bph.12676

Eder, R., 2000. Pigments. In Food analysis by HPLC (Second, pp. 825–880). Marcel Dekker Inc.

El-Ella, D.M.A., Bishayee, A., 2019. The epigenetic targets of berry anthocyanins in cancer prevention. In Epigenetics of Cancer Prevention (pp. 129-148). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-812494-9.00006-8

Erlund, I., Koli, R., Alfthan, G., Marniemi, J., Puukka, P., Mustonen, P., Jula, A., 2008. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. The American Journal of Clinical Nutrition, 87(2), 323-331. DOI: https://doi.org/10.1093/ajcn/87.2.323

Felgines, C., Texier, O., Besson, C., Lyan, B., Lamaison, J.L., Scalbert, A., 2007. Strawberry pelargonidin glycosides are excreted in urine as intact glycosides and glucuronidated pelargonidin derivatives in rats. British Journal of Nutrition, 98(6), 1126-1131. DOI: https://doi.org/10.1017/S0007114507764772

Fernandes, I., Faria, A., Calhau, C., de Freitas, V., Mateus, N., 2014. Bioavailability of anthocyanins and derivatives. Journal of Functional Foods, 7, 54-66. DOI: https://doi.org/10.1016/j.jff.2013.05.010

Forester, S.C., Choy, Y.Y., Waterhouse, A.L., Oteiza, P.I., 2014. The anthocyanin metabolites gallic acid, 3‐O‐methylgallic acid, and 2,4,6‐trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro‐oncogenic signals. Molecular Carcinogenesis, 53(6), 432-439. DOI: https://doi.org/10.1002/mc.21974

Forester, S.C., Waterhouse, A.L., 2008. Identification of Cabernet Sauvignon anthocyanin gut microflora metabolites. Journal of Agricultural and Food Chemistry, 56(19), 9299-9304. DOI: https://doi.org/10.1021/jf801309n

Fossen, T., Cabrita, L., Andersen, O.M., 1998. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chemistry, 63(4), 435-440. DOI: https://doi.org/10.1016/S0308-8146(98)00065-X

Frank, J., Kamal-Eldin, A., Lundh, T., Määttä, K., Törrönen, R., Vessby, B., 2002. Effects of dietary anthocyanins on tocopherols and lipids in rats. Journal of Agricultural and Food Chemistry, 50(25), 7226-7230. DOI: https://doi.org/10.1021/jf025716n

Garcia-Alonso, M., Minihane, A.M., Rimbach, G., Rivas-Gonzalo, J.C., de Pascual-Teresa, S., 2009. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. The Journal of Nutritional Biochemistry, 20(7), 521-529. DOI: https://doi.org/10.1016/j.jnutbio.2008.05.011

Ghareaghajlou, N., Hallaj-Nezhadi, S., Ghasempour, Z., 2021. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chemistry, 365, 130482. DOI: https://doi.org/10.1016/j.foodchem.2021.130482

Giampieri, F., Gasparrini, M., Forbes-Hernandez, T.Y., Mazzoni, L., Capocasa, F., Sabbadini, S., Battino, M., 2018. Overexpression of the anthocyanidin synthase gene in strawberry enhances antioxidant capacity and cytotoxic effects on human hepatic cancer cells. Journal of Agricultural and Food Chemistry, 66(3), 581-592. DOI: https://doi.org/10.1021/acs.jafc.7b04177

Grimes, K.L., Stuart, C.M., McCarthy, J.J., Kaur, B., Cantu, E.J., Forester, S.C., 2018. Enhancing the cancer cell growth inhibitory effects of table grape anthocyanins. Journal of Food Science, 83(9), 2369-2374. DOI: https://doi.org/10.1111/1750-3841.14294

Han, F., Yang, P., Wang, H., Fernandes, I., Mateus, N., Liu, Y., 2019. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends in Food Science & Technology, 83, 211-224. DOI: https://doi.org/10.1016/j.tifs.2018.11.025

Hanske, L., Engst, W., Loh, G., Sczesny, S., Blaut, M., Braune, A., 2013. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. British Journal of Nutrition, 109(8), 1433-1441. DOI: https://doi.org/10.1017/S0007114512003376

Hayashi, K., Mori, M., Knox, Y. M., Suzutan, T., Ogasawara, M., Yoshida, I., Azuma, M., 2003. Anti influenza virus activity of a red-fleshed potato anthocyanin. Food Science and Technology Research, 9(3), 242-244. DOI: https://doi.org/10.3136/fstr.9.242

He, J., Giusti, M.M., 2010. Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1, 163-187. DOI: https://doi.org/10.1146/annurev.food.080708.100754

He, J., Wallace, T.C., Keatley, K.E., Failla, M.L., Giusti, M.M., 2009. Stability of black raspberry anthocyanins in the digestive tract lumen and transport efficiency into gastric and small intestinal tissues in the rat. Journal of Agricultural and Food Chemistry, 57(8), 3141-3148. DOI: https://doi.org/10.1021/jf900567t

Hidalgo, M., Oruna-Concha, M.J., Kolida, S., Walton, G.E., Kallithraka, S., Spencer, J.P., de Pascual-Teresa, S., 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60(15), 3882-3890. DOI: https://doi.org/10.1021/jf3002153

Hossain, M.K., Abdal Dayem, A., Han, J., Yin, Y., Kim, K., Kumar Saha, S., Cho, S.G., 2016. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International Journal of Molecular Sciences, 17(4), 569. DOI: https://doi.org/10.3390/ijms17040569

Hou, D.X., 2003. Potential mechanisms of cancer chemoprevention by anthocyanins. Current Molecular Medicine, 3(2), 149-159. DOI: https://doi.org/10.2174/1566524033361555

Hribar, U., Poklar Ulrih, N., 2014. The metabolism of anthocyanins. Current Drug Metabolism, 15(1), 3-13. DOI: https://doi.org/10.2174/1389200214666131211160308

Igarashi, K., Kimura, Y., Takenaka, A., 2000. Preventive effects of dietary cabbage acylated anthocyanins on paraquat-induced oxidative stress in rats. Bioscience, Biotechnology, and Biochemistry, 64(8), 1600-1607. DOI: https://doi.org/10.1271/bbb.64.1600

Iversen, C., 1996. Degradation of C-vitamin and anthocyanins in blackcurrant juice. In Proceedings of the Symposium on Polyphenols and Anthocyanins as Food Colourants and Antioxidants, Ed by Pfannhauser W and Strigl A. EU, Brussels, Belgium, pp 34.

Jaganathan, S.K., Vellayappan, M.V., Narasimhan, G., Supriyanto, E., Dewi, D.E.O., Narayanan, A.L.T., Yusof, M., 2014. Chemopreventive effect of apple and berry fruits against colon cancer. World Journal of Gastroenterology, 20(45), 17029–17036. DOI: https://doi.org/10.3748/wjg.v20.i45.17029

Janeiro, P., Brett, A.M.O., 2007. Redox behavior of anthocyanins present in Vitis vinifera L. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 19(17), 1779-1786. DOI: https://doi.org/10.1002/elan.200703941

Jang, I.S., Kim, D.H., 1996. Purification and characterization of α-L-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium. Biological and Pharmaceutical Bulletin, 19(12), 1546-1549. DOI: https://doi.org/10.1248/bpb.19.1546

Joshi, R., Rana, A., Kumar, V., Kumar, D., Padwad, Y.S., Yadav, S.K., Gulati, A., 2017. Anthocyanins enriched purple tea exhibits antioxidant, immunostimulatory and anticancer activities. Journal of Food Science and Technology, 54(7), 1953-1963. DOI: https://doi.org/10.1007/s13197-017-2631-7

Jung, U.J., Kim, S.R., 2018. Beneficial effects of flavonoids against Parkinson's disease. Journal of Medicinal Food, 21(5), 421-432. DOI: https://doi.org/10.1089/jmf.2017.4078

Kannan, S., Kolandaivel, P., 2018. The inhibitory performance of flavonoid cyanidin-3-sambubiocide against H274Y mutation in H1N1 influenza virus. Journal of Biomolecular Structure and Dynamics, 36(16), 4255-4269. DOI: https://doi.org/10.1080/07391102.2017.1413422

Kaul, R., Paul, P., Kumar, S., Büsselberg, D., Dwivedi, V D., Chaari, A., 2021. Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: systematic review. International Journal of Molecular Sciences, 22(20), 11069. DOI: https://doi.org/10.3390/ijms222011069

Kawai, A., Fujita, K., 2007. Small red bean (azuki) sheds biologically active substances as a prerequisite step for germination, one of which displays the antiviral activity against the rabies virus infectivity and infections in culture. Microbiology and Immunology, 51(11), 1071-1079. DOI: https://doi.org/10.1111/j.1348-0421.2007.tb04002.x

Kay, C.D., 2006. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews, 19(1), 137-146. DOI: https://doi.org/10.1079/NRR2005116

Keppler, K., Humpf, H.U., 2005. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorganic & Medicinal Chemistry, 13(17), 5195-5205. DOI: https://doi.org/10.1016/j.bmc.2005.05.003

Khan, M.S., Ali, T., Kim, M.W., Jo, M.H., Chung, J.I., Kim, M.O., 2019. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Molecular Neurobiology, 56(1), 671-687. DOI: https://doi.org/10.1007/s12035-018-1101-1

Khanra, R., Dewanjee, S., Dua, T.K., Sahu, R., Gangopadhyay, M., De Feo, V., Zia-Ul-Haq, M., 2015. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. Journal of Translational Medicine, 13(1), 1-14. DOI: https://doi.org/10.1186/s12967-014-0364-1

Khoo, H.E., Azlan, A., Tang, S.T., Lim, S.M., 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. DOI: https://doi.org/10.1080/16546628.2017.1361779

Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F., Brouillard, R., 2003. Analysis and biological activities of anthocyanins. Phytochemistry, 64(5), 923-933. DOI: https://doi.org/10.1016/S0031-9422(03)00438-2

Kramer, J.H., Canter, P.H., 2004. Anthocyanosides of Vaccinium myrtillus (bilberry) for night vision—a systematic review of placebo-controlled trials. Survey of Ophthalmology, 49(6), 618. DOI: https://doi.org/10.1016/j.survophthal.2004.08.009

Krga, I., Milenkovic, D., 2019. Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. Journal of Agricultural and Food Chemistry, 67(7), 1771-1783. DOI: https://doi.org/10.1021/acs.jafc.8b06737

Leong, H.Y., Show, P.L., Lim, M.H., Ooi, C.W., Ling, T.C., 2018. Natural red pigments from plants and their health benefits: A review. Food Reviews International, 34(5), 463-482. DOI: https://doi.org/10.1080/87559129.2017.1326935

Li, D., Wang, P., Luo, Y., Zhao, M., Chen, F., 2017. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition, 57(8), 1729-1741. DOI: https://doi.org/10.1080/10408398.2015.1030064

Li, H., Deng, Z., Zhu, H., Hu, C., Liu, R., Young, J.C., Tsao, R., 2012. Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Research International, 46(1), 250-259. DOI: https://doi.org/10.1016/j.foodres.2011.12.014

Lim, S., Xu, J., Kim, J., Chen, T.Y., Su, X., Standard, J., Wang, W., 2013. Role of anthocyanin‐enriched purple‐fleshed sweet potato p40 in colorectal cancer prevention. Molecular Nutrition & Food Research, 57(11), 1908-1917. DOI: https://doi.org/10.1002/mnfr.201300040

Lin, B.W., Gong, C.C., Song, H.F., Cui, Y.Y., 2017. Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology, 174(11), 1226-1243. DOI: https://doi.org/10.1111/bph.13627

Lo Piero, A.R., 2015. The state of the art in biosynthesis of anthocyanins and its regulation in pigmented sweet oranges [(Citrus sinensis) L. Osbeck]. Journal of Agricultural and Food Chemistry, 63(16), 4031-4041. DOI: https://doi.org/10.1021/acs.jafc.5b01123

Lucioli, S., 2012. Anthocyanins : Mechanism of action and therapeutic efficacy. In Medicinal Plants as Antioxidant Agents: Understanding Their Mechanism of Action and Therapeutic Efficacy (Vol. 661, Issue 2, pp. 27–57). Research Signpost Kerala, India.

Maestro, A., Terdoslavich, M., Vanzo, A., Kuku, A., Tramer, F., Nicolin, V., Passamonti, S., 2010. Expression of bilitranslocase in the vascular endothelium and its function as a flavonoid transporter. Cardiovascular Research, 85(1), 175-183. DOI: https://doi.org/10.1093/cvr/cvp290

Marquart, L.C., 1835. Die Farben der Blüthen: Eine chemisch-physiolog. Abhandlung. Habicht. Matsumoto, H., Nakamura, Y., Iida, H., Ito, K., Ohguro, H., 2006. Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Experimental Eye Research, 83(2), 348-356. DOI: https://doi.org/10.1016/j.exer.2005.12.019

Mazewski, C., Liang, K., de Mejia, E.G., 2018. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays. Food Chemistry, 242, 378-388. DOI: https://doi.org/10.1016/j.foodchem.2017.09.086

Mazza, G., Miniati, E., 2018. Anthocyanins in fruits, vegetables, and grains. CRC press, (vol. 362). DOI: https://doi.org/10.1201/9781351069700

McGhie, T.K., Walton, M.C., 2007. The bioavailability and absorption of anthocyanins: towards a better understanding. Molecular Nutrition & Food Research, 51(6), 702-713. DOI: https://doi.org/10.1002/mnfr.200700092

Messaoudi, O., Gouzi, H., El-Hoshoudy, A.N., Benaceur, F., Patel, C., Goswami, D., Bendahou, M., 2021. Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. Egyptian Journal of Petroleum, 30(1), 33-43. DOI: https://doi.org/10.1016/j.ejpe.2021.01.001

Moshfegh, F., Balanejad, S.Z., Shahrokhabady, K., Attaranzadeh, A., 2022. Crocus sativus (saffron) petals extract and its active ingredient, anthocyanin improves ovarian dysfunction, regulation of inflammatory genes and antioxidant factors in testosterone-induced PCOS mice. Journal of Ethnopharmacology, 282, 114594. DOI: https://doi.org/10.1016/j.jep.2021.114594

Muñoz-González, I., Jiménez-Girón, A., Martín-Álvarez, P.J., Bartolomé, B., Moreno-Arribas, M.V., 2013. Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. Journal of Agricultural and Food Chemistry, 61(39), 9470-9479. DOI: https://doi.org/10.1021/jf4025135

Murapa, P., Dai, J., Chung, M., Mumper, R.J., D'Orazio, J., 2012. Anthocyanin‐rich fractions of blackberry extracts reduce UV‐induced free radicals and oxidative damage in keratinocytes. Phytotherapy Research, 26(1), 106-112. DOI: https://doi.org/10.1002/ptr.3510

Nabavi, S.F., Habtemariam, S., Daglia, M., Shafighi, N., Barber, A.J., Nabavi, S.M., 2015. Anthocyanins as a potential therapy for diabetic retinopathy. Current Medicinal Chemistry, 22(1), 51-58. DOI: https://doi.org/10.2174/0929867321666140815123852

Nohynek, L.J., Alakomi, H.L., Kähkönen, M.P., Heinonen, M., Helander, I.M., Oksman-Caldentey, K.M., Puupponen-Pimiä, R.H., 2006. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer, 54(1), 18-32. DOI: https://doi.org/10.1207/s15327914nc5401_4

Nurmi, T., Mursu, J., Heinonen, M., Nurmi, A., Hiltunen, R., Voutilainen, S., 2009. Metabolism of berry anthocyanins to phenolic acids in humans. Journal of Agricultural and Food Chemistry, 57(6), 2274-2281. DOI: https://doi.org/10.1021/jf8035116

Ohguro, H., Ohguro, I., Katai, M., Tanaka, S., 2012. Two-year randomized, placebo-controlled study of black currant anthocyanins on visual field in glaucoma. Ophthalmologica, 228(1), 26-35. DOI: https://doi.org/10.1159/000335961

Pan, Z., Cui, M., Dai, G., Yuan, T., Li, Y., Ji, T., Pan, Y., 2018. Protective effect of anthocyanin on neurovascular unit in cerebral ischemia/reperfusion injury in rats. Frontiers in Neuroscience, 947. DOI: https://doi.org/10.3389/fnins.2018.00947

Passamonti, S., Vrhovsek, U., Mattivi, F., 2002. The interaction of anthocyanins with bilitranslocase. Biochemical and Biophysical Research Communications, 296(3), 631-636. DOI: https://doi.org/10.1016/S0006-291X(02)00927-0

Passamonti, S., Vrhovsek, U., Vanzo, A., Mattivi, F., 2003. The stomach as a site for anthocyanins absorption from food. FEBS Letters, 544(1-3), 210-213. DOI: https://doi.org/10.1016/S0014-5793(03)00504-0

Pesce, C., Menini, S., 2019. A Protocol Outline of Dietary Intervention to Contrast Diabetic Nephropathy. In Bioactive Food as Dietary Interventions for Diabetes (pp. 33-48). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-813822-9.00003-5

Pina, F., Melo, M. J., Laia, C.A., Parola, A.J., Lima, J.C., 2012. Chemistry and applications of flavylium compounds: a handful of colours. Chemical Society Reviews, 41(2), 869-908. DOI: https://doi.org/10.1039/C1CS15126F

Pojer, E., Mattivi, F., Johnson, D., Stockley, C.S., 2013. The case for anthocyanin consumption to promote human health: a review. Comprehensive Reviews in Food Science and Food Safety, 12(5), 483-508. DOI: https://doi.org/10.1111/1541-4337.12024

Prior, R.L., 2004. Absorption and metabolism of anthocyanins: potential health effects. In A. J. Meskin, M.S., Bidlack, W.R., Davies (Ed.), Phytochemicals: Mechanisms of Action, (1st Edition, pp. 1–19). CRC Press. DOI: https://doi.org/10.1201/9780203506332.ch1

Prior, R.L., Wu, X., 2006. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research, 40(10), 1014-1028. DOI: https://doi.org/10.1080/10715760600758522

Rasheed, Z., Akhtar, N., Anbazhagan, A.N., Ramamurthy, S., Shukla, M., Haqqi, T.M., 2009. Polyphenol-rich pomegranate fruit extract (POMx) suppresses PMACI-induced expression of pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells. Journal of Inflammation, 6(1), 1-12. DOI: https://doi.org/10.1186/1476-9255-6-1

Richardson, P.M., Harborne, J.B., 1990. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Second Edition. In Brittonia (Vol. 42, Issue 2). Springer Science & Business Media. DOI: https://doi.org/10.2307/2807624

Roy, M., Sen, S., Chakraborti, A.S., 2008. Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: implication for glycation-induced hemoglobin modification. Life Sciences, 82(21-22), 1102-1110. DOI: https://doi.org/10.1016/j.lfs.2008.03.011

Salamon, I, 2020. Can Medicinal Plants Help in the Treatment of the New Coronavirus? Some R & D Aspects in Slovak Republic. Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), 4(1), 58-65. DOI: https://doi.org/10.38093/cupmap.950755

Santhi, V.P., Sriramavaratharajan, V., Murugan, R., Masilamani, P., Gurav, S.S., Sarasu, V.P., Ayyanar, M., 2021. Edible fruit extracts and fruit juices as potential source of antiviral agents: a review. Journal of Food Measurement and Characterization, 15(6), 5181-5190. DOI: https://doi.org/10.1007/s11694-021-01090-7

Schön, C., Mödinger, Y., Krüger, F., Doebis, C., Pischel, I., Bonnländer, B., 2021. A new high-quality elderberry plant extract exerts antiviral and immunomodulatory effects in vitro and ex vivo. Food and Agricultural Immunology, 32(1), 650-662. DOI: https://doi.org/10.1080/09540105.2021.1978941

Shah, S.A., Amin, F.U., Khan, M., Abid, M.N., Rehman, S.U., Kim, T.H., Kim, M.O., 2016. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. Journal of Neuroinflammation, 13(1), 1-16. DOI: https://doi.org/10.1186/s12974-016-0752-y

Shaik, A., Naidu, K.K., Panda, J., 2018. A review on anthocyanins: a promising role on phytochemistry and pharmacology. International Research Journal of Pharmacy, 9(1), 1-9.

Shih, P.H., Wu, C.H., Yeh, C.T., Yen, G.C., 2011. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. Journal of Agricultural and Food Chemistry, 59(5), 1683-1689. DOI: https://doi.org/10.1021/jf103822h

Singletary, K.W., Jung, K.J., Giusti, M., 2007. Anthocyanin-rich grape extract blocks breast cell DNA damage. Journal of Medicinal Food, 10(2), 244-251. DOI: https://doi.org/10.1089/jmf.2006.258

Smeriglio, A., Barreca, D., Bellocco, E., Trombetta, D., 2016. Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, 30(8), 1265-1286. DOI: https://doi.org/10.1002/ptr.5642

Sonmez, F., Gunesli, Z., Demir, T., Cıkrıkcı, K., Ergun, A., Gencer, N., Arslan, O., 2022. The Effect of Total Anthocyanins Extracted From Sweet Cherry Cultivars on Carbonic Anhydrases and Antioxidant Activity. Erwerbs-Obstbau, 1-9. DOI: https://doi.org/10.1007/s10341-021-00624-z

Stalmach, A., Edwards, C.A., Wightman, J.D., Crozier, A., 2013. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food & Function, 4(1), 52-62. DOI: https://doi.org/10.1039/C2FO30151B

Talavéra, S., Felgines, C., Texier, O., Besson, C., Manach, C., Lamaison, J.L., Rémésy, C., 2004. Anthocyanins are efficiently absorbed from the small intestine in rats. The Journal of Nutrition, 134(9), 2275-2279. DOI: https://doi.org/10.1093/jn/134.9.2275

Tarozzi, A., Morroni, F., Merlicco, A., Bolondi, C., Teti, G., Falconi, M., Hrelia, P., 2010. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25-35) oligomer-induced toxicity. Neuroscience Letters, 473(2), 72-76. DOI: https://doi.org/10.1016/j.neulet.2010.02.006

Timberlake, C.F., Henry, B.S., 1988. Anthocyanins as natural food colorants. Progress in Clinical and Biological Research, 280, 107-121.

Toufektsian, M.C., De Lorgeril, M., Nagy, N., Salen, P., Donati, M.B., Giordano, L., Martin, C., 2008. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. The Journal of Nutrition, 138(4), 747-752. DOI: https://doi.org/10.1093/jn/138.4.747

Tsuda, T., Horio, F., Uchida, K., Aoki, H., Osawa, T., 2003. Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition, 133(7), 2125-2130. DOI: https://doi.org/10.1093/jn/133.7.2125

Tsuda, T., Shiga, K., Ohshima, K., Kawakishi, S., Osawa, T., 1996. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochemical Pharmacology, 52(7), 1033-1039. DOI: https://doi.org/10.1016/0006-2952(96)00421-2

Turturică, M., Oancea, A.M., Râpeanu, G., Bahrim, G., 2015. Anthocyanins: naturally occuring fruit pigments with functional properties. Annals of the University Dunarea de Jos of Galati Fascicle VI--Food Technology, 39(1), 9–24.

Vanamala, J.K.P., 2019. Potatoes for targeting colon cancer stem cells. American Journal of Potato Research, 96(2), 177-182. DOI: https://doi.org/10.1007/s12230-018-09700-9

Veberic, R., Jakopic, J., Stampar, F., Schmitzer, V., 2009. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114(2), 511-515. DOI: https://doi.org/10.1016/j.foodchem.2008.09.080

Wang, L.S., Stoner, G.D., 2008. Anthocyanins and their role in cancer prevention. Cancer Letters, 269(2), 281-290. DOI: https://doi.org/10.1016/j.canlet.2008.05.020

Wang, S.Y., Jiao, H., 2000. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agricultural and Food Chemistry, 48(11), 5677-5684. DOI: https://doi.org/10.1021/jf000766i

Werlein, H.D., Kütemeyer, C., Schatton, G., Hubbermann, E.M., Schwarz, K., 2005. Influence of elderberry and blackcurrant concentrates on the growth of microorganisms. Food Control, 16(8), 729-733. DOI: https://doi.org/10.1016/j.foodcont.2004.06.011

Wu, V.C.H., Qiu, X., Bushway, A., Harper, L., 2008. Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT-Food Science and Technology, 41(10), 1834-1841. DOI: https://doi.org/10.1016/j.lwt.2008.01.001

Yang, M., Koo, S.I., Song, W.O., Chun, O.K., 2011. Food matrix affecting anthocyanin bioavailability. Current Medicinal Chemistry, 18(2), 291-300. DOI: https://doi.org/10.2174/092986711794088380

Yang, W., Guo, Y., Liu, M., Chen, X., Xiao, X., Wang, S., Chen, F., 2022. Structure and function of blueberry anthocyanins: A review of recent advances. Journal of Functional Foods, 88, 104864. DOI: https://doi.org/10.1016/j.jff.2021.104864

Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J.A., Bagchi, D., 2007. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research, 51(6), 675-683. DOI: https://doi.org/10.1002/mnfr.200700002

Zhang, H., Wang, L., Deroles, S., Bennett, R., Davies, K., 2006. New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biology, 6(1), 1-14. DOI: https://doi.org/10.1186/1471-2229-6-29

Zhang, J., Xiao, J., Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Afrin, S., Cianciosi, D., Reboredo-Rodriguez, P., Battino, M., Zheng, X., 2019. Inhibitory effects of anthocyanins on α -glucosidase activity. Journal of Berry Research, 9(1), 109–123. DOI: https://doi.org/10.3233/JBR-180335

Zhang, Y., Seeram, N.P., Lee, R., Feng, L., Heber, D., 2008. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. Journal of Agricultural and Food Chemistry, 56(3), 670-675. DOI: https://doi.org/10.1021/jf071989c

Zhang, Y., Vareed, S.K., Nair, M.G., 2005. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sciences, 76(13), 1465-1472. DOI: https://doi.org/10.1016/j.lfs.2004.08.025

Zhu, W., Jia, Q., Wang, Y., Zhang, Y., Xia, M., 2012. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP–PKA-dependent signaling pathway. Free Radical Biology and Medicine, 52(2), 314-327. DOI: https://doi.org/10.1016/j.freeradbiomed.2011.10.483

Downloads

Published

07.02.2022

How to Cite

Patra, S., Makhal, P. N., Jaryal, S. ., More, . N., & Kaki, V. R. (2022). Anthocyanins: Plant-based flavonoid pigments with diverse biological activities. International Journal of Plant Based Pharmaceuticals, 2(1), 118–127. https://doi.org/10.62313/ijpbp.2022.22

Issue

Section

Reviews