Extraction, characterization, and evaluation of the functionality of fixed oil low-quality coffee beans for use as pharmaceutical ingredients


Abstract views: 47 / PDF downloads: 16

Authors

  • Ester do Nascimento Moulin Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Pós-Graduanda em Agronomia, Brazil https://orcid.org/0000-0002-0842-3740
  • Ítalo Fonseca Werner Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Graduando do Curso de Agronomia, Brazil https://orcid.org/0000-0001-8873-0419
  • Jaqueline Rodrigues Cindra de Lima Souza Ciência e Tecnologia do Espírito Santo-Campus de Alegre, Instituto Federal de Educação, Laboratório de Química Aplicada e Biotecnologia, Brazil https://orcid.org/0000-0002-2022-8462
  • Milene Miranda Praça Fontes Universidade Federal do Espírito Santo, Naturais e da Saúde, Centro de Ciências Exatas, Departamento de Biologia, Laboratório de Citogenética, Brazil https://orcid.org/0000-0001-7738-9518
  • Janaína Cecília Oliveira Villanova Universidade Federal do Espírito Santo, Naturais e da Saúde, Centro de Ciências Exatas, Departamento de Farmácia e Nutrição, Laboratório de Produção Farmacêutica, Brazil https://orcid.org/0000-0001-6166-1724
  • Tércio da Silva de Souza Ciência e Tecnologia do Espírito Santo-Campus de Alegre, Instituto Federal de Educação, Laboratório de Química Aplicada e Biotecnologia, Brazil https://orcid.org/0000-0002-6667-1806

DOI:

https://doi.org/10.5281/zenodo.6387408

Keywords:

Natural antioxidant, Pharmaceutical emulsions, Cosmetics, Green coffee

Abstract

In order to offer a viable destination for green coffee beans classified as non-beverage type, this work aimed to extract and characterize the fixed oil from these beans and perform a preliminary evaluation of its functionality as a pharmaceutical ingredient. The extraction yield obtained was 3.70 ± 1.29% (w/w). The oil present in its composition high levels of fatty acids with emulsifying and emollient properties, palmitic acid (47.76%) and linoleic acid (32.98%); and compounds with antioxidant functional properties, tocopherols (788.71 ± 56.08 mg/kg) and phenolic compounds (3312.40 ± 14.62 mg/kg). This oil showed antioxidant activity against the free radical 2,2-diphenyl-1-picryl hydrazil at all tested concentrations, reaching 50% inhibition at the concentration of 0.59 mg/ml and 90% at 0.96 mg/ml. The preliminary evaluation of the physical stability of the creams showed that, when incorporated into formulations, this oil has the potential to be used as a substitute for the synthetic ingredients liquid petrolatum, decyl oleate, and butylated hydroxytoluene.

References

Abdullah, M., Koc, A.B., 2013. Oil removal from waste coffee grounds using two-phase solvent extraction enhanced with ultrasonication. Renewable Energy, 50, 965-970.

Acevedo, F., Rubilar, M., Scheuermann, E., Cancino, B., Uquiche, E., Garcés, M., Shene, C., 2013. Spent coffee grounds as a renewable source of bioactive compounds. Journal of Biobased Materials and Bioenergy, 7(3), 420-428.

Aguiar, A.T.D.E., Salva, T.D.J.G., Fazuoli, L.C., Favarin, J.L., 2005. Variação no teor de lipídios em grãos de variedades de Coffea canephora. Pesquisa Agropecuária Brasileira, 40, 1251-1254.

Ahmad, A., Ahsan, H., 2020. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomedical Dermatology, 4(1), 1-10.

Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., Kaltschmitt, M., 2012. Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel, 96, 70-76.

Allen Jr, L.V., Popovich, N.G., Ansel, H.C., 2013. Formas Farmacêuticas e Sistemas de Liberação de Fármacos, nine ed. Artmed Editora, Porto Alegre. ISBN 9788565852845.

Attwood, D., Florence, A.T., Rothschild, Z., 2011. Princípios Físico-Químicos em Farmácia. Second ed. Farmabooks, São Paulo. ISBN 978858973135-5.

Aulton, M.E, Taylor, K.M.G., 2016. Delineamento de Formas Farmacêuticas, fourth ed, Elsevier, Brasil. ISBN.8535262784, 9788535262780.

Bera, D., Lahiri, D., Nag, A., 2006. Studies on a natural antioxidant for stabilization of edible oil and comparison with synthetic antioxidants. Journal of Food Engineering, 74(4), 542-545.

Blasi, F., Cossignani, L., 2020. An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes, 8(8), 956.

Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.

Brasil, Anvisa, 2004. Agência Nacional de Vigilância Sanitária. Guia de estabilidade de produtos cosméticos. Editora Anvisa, 2004. ISBN 85-88233-15-0.

Brasil, Anvisa, 2005. Resolução RDC ANVISA/MS n°.270, de 22 de setembro de 2005. Regulamento Técnico para Óleos Vegetais, Gorduras Vegetais e Creme Vegetal.

Brasil, Anvisa., 2012. Formulário Nacional da Farmacopeia Brasileira. Edn 2, Agência Nacional de Vigilância Sanitária, Brasília. p. 224.

Brasil, Companhia Nacional de Abastecimento, 2020a. Acompanhamento da safra brasileira de café, v. 6 – Safra 2020, n. 4 - Quarto levantamento, Brasília, p. 1-45, dezembro 2020. ISSN 2318-7913.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento, 2003. Instrução Normativa nº 8, de 11 de junho de 2003. Regulamento Técnico de Identidade e de Qualidade para a Classificação do Café Beneficiado Grão Cru. Diário Oficial da República Federativa do Brasil, Brasília, DF, 13 jun. 2003. Seção 1, p. 22-29.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento, 2020b. Instrução Normativa nº 8, de 11 de junho de 2003. Regulamento Técnico de Identidade e de Qualidade para a Classificação do Café Beneficiado Grão Cru. Diário Oficial da República Federativa do Brasil. Brasília, DF, 15 set. 2020. Seção 1, p. 22-29.

Brige, F.A.A., 2016. Variabilidade genética e caracterização química de acessos de café conilon em sistema de cultivo irrigado no Cerrado. Disserrtaçao de Mestrado em Agronomia, Universidade de Brasilia.

Bruxel, F., Laux, M., Wild, L.B., Fraga, M., Koester, L.S., Teixeira, H.F., 2012. Nanoemulsões como sistemas de liberação parenteral de fármacos. Química Nova, 35(9), 1827-1840.

Cafesul, 2021. Cooperativa dos Cafeicultores do Sul do Estado do Espírito Santo.

Chiari, B.G., Trovatti, E., Pecoraro, É., Corrêa, M.A., Cicarelli, R.M.B., Ribeiro, S.J.L., Isaac, V.L.B., 2014. Synergistic effect of green coffee oil and synthetic sunscreen for health care application. Industrial Crops and Products, 52, 389-393.

Cruz, J.M., Conde, E., Domínguez, H., Parajó, J.C., 2007. Thermal stability of antioxidants obtained from wood and industrial wastes. Food Chemistry, 100(3), 1059-1064.

Dak, M., Verma, R.C., Jaaffrey, S.N.A., 2007. Effect of temperature and concentration on rheological properties of “Kesar” mango juice. Journal of Food Engineering, 80(4), 1011-1015.

D'Amelio, N., De Angelis, E., Navarini, L., Schievano, E., Mammi, S., 2013. Green coffee oil analysis by high-resolution nuclear magnetic resonance spectroscopy. Talanta, 110, 118-127.

Dantas, M.B., Albuquerque, A.R., Barros, A.K., Rodrigues Filho, M.G., Antoniosi Filho, N.R., Sinfrônio, F.S.M., Souza, A.G., 2011. Evaluation of the oxidative stability of corn biodiesel. Fuel, 90(2), 773-778.

de Almeida, L.F., Spers, E.E., 2020. Coffee Consumption and Industry Strategies in Brazil. Woodhead Publishing. ISBN: 978-0-12-814721-4.

de Lima Souza, J.R.C., Villanova, J.C.O., de Souza, T.D.S., Maximino, R.C., Menini, L., 2021. Vegetable fixed oils obtained from soursop agro-industrial waste: Extraction, characterization and preliminary evaluation of the functionality as pharmaceutical ingredients. Environmental Technology & Innovation, 21, 101379.

de Oliveira, P.M.A., de Almeida, R.H., de Oliveira, N.A., Bostyn, S., Goncalves, C.B., de Oliveira, A.L., 2014. Enrichment of diterpenes in green coffee oil using supercritical fluid extraction–Characterization and comparison with green coffee oil from pressing. The Journal of Supercritical Fluids, 95, 137-145.

do Rosário, M.S., Gauto, M.I.R., Silva, A.C.L.N., Sales, J.S., dos Santos Pereira, F., dos Santos, E.P., Costa, M.C.P., 2021. Estudo de estabilidade de emulsão cosmética com potencial de creme hidratante para o tratamento da xerose cutânea utilizando o óleo de babaçu (Orbignya phalerata Martius). Brazilian Journal of Development, 7(3), 29552-29570.

Durán, C.A., Regalado, E., Guzmán, M., Navas, P.B., 2004. Determinación de vitamina E en aceites. Una experiencia didáctica en Química Analítica Instrumental. Educación Química, 15(4e), 343-348.

Durán, C.A., Tsukui, A., Santos, F.K.F., Martinez, S.T., Bizzo, H.R., Rezende, C.M., 2017. Café: Aspectos Gerais e seu Aproveitamento para além da Bebida. Revista Virtual de Química, 9(1), 107-134.

Esquivel Rodríguez, P., Viñas Meneses, M., Steingass, C.B., Gruschwitz, M., Guevara Berger, E., Carle, R., Schweiggert, R.M., Jiménez García, V., 2020. V. Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties with Different Peel Color.

Esquivel, P., Jimenez, V.M., 2012. Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488-495.

FAO (Food and Agriculture Organization of the United Nations), 2021. Codex Standards for Fats and Oils from Vegetable Sources. Accessed August 2021.

Ferrari, R.A., Souza, W.L.D., 2009. Avaliação da estabilidade oxidativa de biodiesel de óleo de girassol com antioxidantes. Química Nova, 32(1), 106-111.

Fonseca-Santos, B., Corrêa, M.A., Chorilli, M., 2015. Sustainability, natural and organic cosmetics: consumer, products, efficacy, toxicological and regulatory considerations. Brazilian Journal of Pharmaceutical Sciences, 51, 17-26.

Frelichowska, J., Bolzinger, M.A., Valour, J.P., Mouaziz, H., Pelletier, J., Chevalier, Y., 2009. Pickering w/o emulsions: drug release and topical delivery. International Journal of Pharmaceutics, 368(1-2), 7-15.

Garg, S.K., Shukla, A., Choudhury, S., 2021. Green coffee beans. In Nutraceuticals Academic Press, Cambridge, pp. 725-748.

Górnaś, P., Dwiecki, K., Siger, A., Tomaszewska-Gras, J., Michalak, M., Polewski, K., 2016. Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. European Food Research and Technology, 242(5), 641-653.

Górnaś, P., Siger, A., Pugajeva, I., Czubinski, J., Waśkiewicz, A., Polewski, K., 2014. New insights regarding tocopherols in Arabica and Robusta species coffee beans: RP-UPLC-ESI/MSn and NP-HPLC/FLD study. Journal of Food Composition and Analysis, 36(1-2), 117-123.

Hameed A., Hussain S.A., Suleria H.A.R., 2018. “Coffee Bean-Related” Agroecological Factors Affecting the Coffee. In: Merillon JM., Ramawat K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham.

Hosseini, H., Ghorbani, M., Meshginfar, N., Mahoonak, A.S., 2016. A review on frying: procedure, fat, deterioration progress and health hazards. Journal of the American Oil Chemists' Society, 93(4), 445-466.

Hu, Y.T., Ting, Y., Hu, J.Y., Hsieh, S.C., 2017. Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, 25(1), 16-26.

Instituto Adolfo Lutz (São Paulo), 2008. Métodos físico-químicos para análise de alimentos: /coordenadores Odair Zenebon, Neus Sadocco Pascuet e Paulo Tiglea -- São Paulo: Instituto Adolfo Lutz. versão eletrônica, 1020p.

Jenkins, R.W., Ellis, E.H., Lewis, E.J., Paterson, M., Le, C.D., Ting, V.P., Chuck, C.J., 2017. Production of biodiesel from Vietnamese waste coffee beans: biofuel yield, saturation and stability are all elevated compared with conventional coffee biodiesel. Waste and Biomass Valorization, 8(4), 1237-1245.

Jham, G.N., Winkler, J.K., Berhow, M.A., Vaughn, S.F., 2007. γ-Tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn. Journal of Agricultural and Food Chemistry, 55(15), 5995-5999.

Kalschne, D.L., Viegas, M.C., De Conti, A.J., Corso, M.P., de Toledo Benassi, M., 2018. Steam pressure treatment of defective Coffea canephora beans improves the volatile profile and sensory acceptance of roasted coffee blends. Food Research International, 105, 393-402.

Keen, M.A., Hassan, I., 2016. Vitamin E in dermatology. Indian Dermatology Online Journal, 7(4), 311.

Kemsley, E.K., Ruault, S., Wilson, R.H., 1995. Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy. Food Chemistry, 54(3), 321-326.

López-Barrera, D.M., Vázquez-Sánchez, K., Loarca-Piña, M.G.F., Campos-Vega, R., 2016. Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chemistry, 212, 282-290.

Lourenço, S.C., Moldão-Martins, M., Alves, V.D., 2019. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 4132.

Lu, C., Napier, J.A., Clemente, T.E., Cahoon, E.B., 2011. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Current Opinion in Biotechnology, 22(2), 252-259.

Mazzafera, P., Soave, D., Zullo, M.A.T., Guerreiro Filho, O., 1998. Oil content of green beans from some coffee species. Bragantia, 57(1), 45-48.

Mezger, T.G., 2020. The rheology handbook: for users of rotational and oscillatory rheometers. Fifth edition, European Coatings, Hanover. ISBN 978-3-86630-532-8.

Milatovic, D., Zaja-Milatovic, S., Gupta, R.C., 2016. Oxidative stress and excitotoxicity: antioxidants from nutraceuticals. In Nutraceuticals. Academic Press, Cambridge. 401-413.

Mohsin, S., Akhtar, N., Mahmood, T., Khan, H., Mustafa, R., 2016. Formulation and stability of topical water in oil emulsion containing corn silk extract. Tropical Journal of Pharmaceutical Research, 15(6), 1115-1121.

Montenegro, L., Rapisarda, L., Ministeri, C., Puglisi, G., 2015. Effects of lipids and emulsifiers on the physicochemical and sensory properties of cosmetic emulsions containing vitamin E. Cosmetics, 2(1), 35-47.

Ndayishimiye, J., Chun, B.S., 2017. Optimization of carotenoids and antioxidant activity of oils obtained from a co-extraction of citrus (Yuzu ichandrin) by-products using supercritical carbon dioxide. Biomass and Bioenergy, 106, 1-7.

Nosari, A.B., Lima, J.F., Serra, O.A., Freitas, L.A.P., 2015. Improved green coffee oil antioxidant activity for cosmetical purpose by spray drying microencapsulation. Revista Brasileira de Farmacognosia, 25, 307-311.

Oliveira, É.R., Carvalho, G.R., Cirillo, M.Â., Queiroz, F., 2020. Effect of ecofriendly bio-based solvents on oil extraction from green coffee bean and its industrial press cake. Brazilian Journal of Chemical Engineering, 36(4), 1739-1753.

Otemuyiwa, I.O., Adewusi, S.R., 2013. Fatty acid, carotenoid and tocopherol content of some fast foods from a Nigerian eatery. Journal of Food and Nutrition Research, 1(5), 82-86.

Parente, M.E., Ga´ Mbaro, A., Solana, G., 2005. Study of sensory properties of emollients used in cosmetics and their correlation with physicochemical properties. International Journal of Cosmetic Science, 27(6), 354-354.

Pereda, M.D.V., Dieamant, G., Eberlin, S., Nogueira, C., Colombi, Stasi, L.C.D., Queiroz, M.L.S., 2009. Effect of green Coffea arabica L. seed oil on extracellular matrix components and water‐channel expression in in vitro and ex vivo human skin models. Journal of Cosmetic Dermatology, 8(1), 56-62.

Pereira, N.P., Miguel, O.G., Miguel, M.D., 2005. Chemical composition of the fixed oil from [Chamomilla recutita (L.) Rauschert] dried fruits native to the municipality of Mandirituba, Paraná (PR). Revista Brasileira de Farmacognosia, 15, 334-337.

Poljšak, N., Kreft, S., Kočevar Glavač, N., 2020. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phytotherapy Research, 34(2), 254-269.

Poltronieri, P., Rossi, F., 2016. Challenges in specialty coffee processing and quality assurance. Challenges, 7(2), 19.

Proksch, E., 2018. pH in nature, humans and skin. The Journal of Dermatology, 45(9), 1044-1052.

R: Development Core Team, 2019. A Language and Environment for Statistical Computing. Version 3.6.2 (2019-12-12). The R Foundation for Statistical Computing.

Rabinovich-Guilatt, L., Dubernet, C., Gaudin, K., Lambert, G., Couvreur, P., Chaminade, P., 2005. Phospholipid hydrolysis in a pharmaceutical emulsion assessed by physicochemical parameters and a new analytical method. European Journal of Pharmaceutics and Biopharmaceutics, 61(1-2), 69-76.

Ren, Y., Wang, C., Xu, J., Wang, S., 2019. Cafestol and kahweol: A review on their bioactivities and pharmacological properties. International Journal of Molecular Sciences, 20(17), 4238.

Rodrigues, N.P., Bragagnolo, N., 2013. Identification and quantification of bioactive compounds in coffee brews by HPLC–DAD–MSn. Journal of Food Composition and Analysis, 32(2), 105-115.

Rosiaux, Y., Jannin, V., Hughes, S., Marchaud, D., 2015. Solid lipid excipients as matrix agents for sustained drug delivery. Excipient Applications in Formulation Design and Drug Delivery, 237-271.

Rowe, R.C., Sheskey, P., Quinn, M., 2009. Handbook of pharmaceutical excipients. Libros Digitales. Sixth ed. Pharmaceutical Press, Washington. ISBN 978 1 58212 135 2. Diponível em:

Salmela, L., Washington, C., 2014. A continuous flow method for estimation of drug release rates from emulsion formulations. International Journal of Pharmaceutics, 472(1-2), 276-281.

Santos, F.L., Nantes, J.F.D., 2014. Coordenação no mercado do café brasileiro: o desserviço da classificação por defeitos. Gestão & Produção, 21, 586-599.

Sarkar, R., Podder, I., Gokhale, N., Jagadeesan, S., Garg, V.K., 2017. Use of vegetable oils in dermatology: an overview. International Journal of Dermatology, 56(11), 1080-1086.

Scott, S.E., Rozin, P., Small, D.A., 2020. Consumers prefer “natural” more for preventatives than for curatives. Journal of Consumer Research, 47(3), 454-471.

Shamsudin, R., Ling, C.S., Adzahan, N.M., Daud, W.R.W., 2013. Rheological properties of ultraviolet-irradiated and thermally pasteurized Yankee pineapple juice. Journal of Food Engineering, 116(2), 548-553.

Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M., 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press.

Somnuk, K., Eawlex, P., Prateepchaikul, G., 2017. Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process. Agriculture and Natural Resources, 51(3), 181-189.

Speer, K., Kölling-Speer, I., 2006. The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology, 18(1), 201-216.

Spernath, A., Aserin, A., Sintov, A.C., Garti, N., 2008. Phosphatidylcholine embedded micellar systems: Enhanced permeability through rat skin. Journal of Colloid and Interface Science, 318(2), 421-429.

Taghvaei, M., Jafari, S.M., 2015. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. Journal of Food Science and Technology, 52(3), 1272-1282.

Toci, A.T., Farah, A., 2014. Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low quality indicators. Food Chemistry, 153, 298-314.

Tsukui, A., Júnior, H.S., Oigman, S.S., De Souza, R.O.M.A., Bizzo, H.R., Rezende, C.M., 2014. Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC. Food Chemistry, 164, 266-271.

Wagemaker, T.A.L., Carvalho, C.R.L., Maia, N.B., Baggio, S.R., Guerreiro Filho, O., 2011. Sun protection factor, content and composition of lipid fraction of green coffee beans. Industrial Crops and Products, 33(2), 469-473.

Wagemaker, T.A.L., Fernandes, A.S., Campos, P.M., Rodrigues, L.M., Rijo, P., 2012. Evaluation of antioxidant and antimicrobial activities of green coffee oil in cosmetic formulations. Biomedical and Biopharmaceutical Research, 2(9), 207-214.

Wagemaker, T.A.L., Fernandes, A.S., Rosado, C., Rijo, P., Campos, P.M., Rodrigues, L.M., 2013. Safety of green coffee oil in cosmetic formulations: from in vitro to clinical studies. Toxicology Letters, (221), S231.

Wagemaker, T.A.L., Silva, S.A., Leonardi, G.R., Campos, P.M.M., 2015. Green Coffea arabica L. seed oil influences the stability and protective effects of topical formulations. Industrial Crops and Products, 63, 34-40.

Wei, F., Tanokura, M., 2015. Organic compounds in green coffee beans. In Coffee in health and disease prevention. Academic Press, Cambridge, pp. 149-162.

Xu, H., Wang, W., Liu, X., Yuan, F., Gao, Y., 2015. Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Industrial Crops and Products, 76, 946-954.

Zielińska, A., Nowak, I., 2017. Abundance of active ingredients in sea-buckthorn oil. Lipids in Health and Disease, 16(1), 1-11.

Downloads

Published

16.02.2022

How to Cite

Moulin, E. do N., Werner, Ítalo F., de Lima Souza, J. R. C., Fontes, M. M. P., Villanova, J. C. O., & de Souza, T. da S. (2022). Extraction, characterization, and evaluation of the functionality of fixed oil low-quality coffee beans for use as pharmaceutical ingredients. International Journal of Plant Based Pharmaceuticals, 2(2), 155–165. https://doi.org/10.5281/zenodo.6387408

Issue

Section

Research Articles