Effect of phytoestrogen-rich fraction of Millettia aboensis on lipid profile, oxidative stress, and platelet count in ovariectomized rat model of menopause
Abstract views: 299 / PDF downloads: 230
DOI:
https://doi.org/10.29228/ijpbp.31Keywords:
Pytoestrogen, Millettia aboensis, Ovariectomized, Cardiovascular, Antioxidant activity, MenopauseAbstract
Milletia aboensis has long-standing ethnopharmacological indications for the treatment of symptoms and diseases related to menopause. This investigation examined the effects of its phytoestrogen-rich fraction on some predictors of cardiovascular risk in an ovariectomized rat model of menopause. In vitro, antioxidant activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. Ovariectomy was used to trigger menopause by surgically removing the ovaries under anesthesia. After recovery, the animals were treated orally with the phytoestrogen-rich fraction (PERF) of M. aboensis daily for 30 days. Blood samples were obtained for the estimation of serum lipid profile, antioxidant enzyme activities, lipid peroxidation, and platelet count. The PERF showed the strongest inhibition of DPPH radical with an IC50 value of 19.65 µg/ml. At 200 and 400 mg/kg, the PERF dose-dependently showed significant increase in high-density lipoprotein (HDL) (42.86 and 43.05 mg/dl) and a significant (p < 0.05) decrease in low-density lipoprotein (LDL) levels (3.78 and 1.24 mg/dl) compared with the ovariectomized (OVX) control (31.82 and 20.32 mg/dl, respectively). Being dose-dependently, the PERF increased catalase (CAT) and superoxide dismutase (SOD) enzyme activities as well as significantly reduced malondialdehyde (MDA) levels compared to OVX control. At 200 and 400 mg/kg, the PERF restored platelet count with values (316.54 and 343.3 103/IU, respectively) close to that of sham-operated control (365.17 103/IU). The ability of M. aboensis to reverse lipid abnormalities associated with ovariectomy coupled with its reduced platelet count, and antioxidant effects make it a potential therapeutic phytoestrogen remedy for the management of cardiovascular complications associated with estrogen deficiency.
References
Ajaghaku, A. A., Ajaghaku, D. L., Onyegbule, F. A., & Okoye, F. B. C. (2021a). Estrogenic and safety evaluation of root extract of Millettia aboensis as a potential plant derived alternative for hormone replacement therapy. South African Journal of Botany, 140, 123-134.
Ajaghaku, A. A., Ajaghaku, D. L., Onyegbule, F. A., & Okoye, F. B. C. (2021b). Suppression of IL-6 mediated NFκB signaling pathway as possible osteoprotective mechanism of Millettia aboensis. Phytomedicine Plus, 1(1), 100010.
Ajaghaku, D. L., Obasi, O., Umeokoli, B. O., Ogbuatu, P., Nworu, C. S., Ilodigwe, E. E., & Okoye, F. B. C. (2017). In vitro and in vivo antioxidant potentials of Alchornea floribunda leaf extract, fractions and isolated bioactive compounds. Avicenna Journal of Phytomedicine, 7(1), 80-92.
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.
Amigo-Benavent, M., Silván, J. M., Moreno, F. J., Villamiel, M., & Del Castillo, M. D. (2008). Protein quality, antigenicity, and antioxidant activity of soy-based foodstuffs. Journal of Agricultural and Food Chemistry, 56(15), 6498-6505.
Anwuchaepe, A., Ajaghaku, D., Ahamefula, O., & Okoye, F. (2019). Safety profile and estrogenic activity of extracts and phytoestrogen rich fractions of Vitex doniana and Millettia aboensis. Planta Medica, 85(18), 1546.
Bacon, J. (2021). Estrogen therapy. Retrieved from https://emedicine.medscape.com/article/276107-overview. Accessed April 3, 2021.
Brown, B. (1976). Direct methods for platelet counts-Rees and Ecker method. Haematology: Principles and Procedures, 2nd ed. Lea and Febiger, Philadelphia, 101-103.
dos Santos, R. L., da Silva, F. B., Ribeiro Jr, R. F., & Stefanon, I. (2014). Sex hormones in the cardiovascular system. Hormone Molecular Biology and Clinical Investigation, 18(2), 89-103.
Doshi, S. B., & Agarwal, A. (2013). The role of oxidative stress in menopause. Journal of Mid-Life Health, 4(3), 140-146.
Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502.
Fu, X., Xing, L., Xu, W., & Shu, J. (2016). Treatment with estrogen protects against ovariectomy-induced hepatic steatosis by increasing AQP7 expression. Molecular Medicine Reports, 14(1), 425-431.
Gencel, B., Benjamin, M., Bahou, N., & Khalil, A. (2012). Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini Reviews in Medicinal Chemistry, 12(2), 149-174.
Grippo, A. A., Capps, K., Rougeau, B., & Gurley, B. J. (2007). Analysis of flavonoid phytoestrogens in botanical and ephedra-containing dietary supplements. Annals of Pharmacotherapy, 41(9), 1375-1382.
Hedayatnia, M., Asadi, Z., Zare-Feyzabadi, R., Yaghooti-Khorasani, M., Ghazizadeh, H., Ghaffarian-Zirak, R., Nosrati-Tirkani, A., Mohammadi-Bajgiran, M., Rohban, M., et al. (2020). Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids in Health and Disease, 19(42), 1-11.
Huyut, Z., Beydemir, Ş., & Gülçin, İ. (2017). Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochemistry Research International, 2017, 7616791.
Jiang, Y., & Tian, W. (2017). The effects of progesterones on blood lipids in hormone replacement therapy. Lipids in Health and Disease, 16, 219.
Kasımay, Ö., Şener, G., Çakır, B., Yüksel, M., Çetinel, Ş., Contuk, G., & Yeğen, B. Ç. (2009). Estrogen protects against oxidative multiorgan damage in rats with chronic renal failure. Renal Failure, 31(8), 711-725.
Kim, O. Y., Chae, J. S., Paik, J. K., Seo, H. S., Jang, Y., Cavaillon, J. M., & Lee, J. H. (2012). Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age, 34, 415-425.
Ko, S. H., & Kim, H. S. (2020). Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients, 12(1), 202.
Krizova, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules, 24(6), 1076.
Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal, 15(1), 1-22.
Maric-Bilkan, C., Gilbert, E. L., & Ryan, M. J. (2014). Impact of ovarian function on cardiovascular health in women: focus on hypertension. International Journal of Women's Health, 6, 131-139.
Mbagwu, I. S., Akah, P. A., & Ajaghaku, D. L. (2020). Newbouldia laevis improved glucose and fat homeostasis in a TYPE-2 diabesity mice model. Journal of Ethnopharmacology, 251, 112555.
Merz, A. A., & Cheng, S. (2016). Sex differences in cardiovascular ageing. Heart, 102(11), 825-831.
Mittal, R., Mittal, N., Hota, D., Suri, V., Aggarwal, N., & Chakrabarti, A. (2014). Antioxidant effect of isoflavones: A randomized, double-blind, placebo controlled study in oophorectomized women. International Journal of Applied and Basic Medical Research, 4(1), 28-33.
Nestel, P. (2004). Isoflavones: effects on cardiovascular risk and functions. Paper presented at the International Congress Series.
Periayah, M. H., Halim, A. S., & Saad, A. Z. M. (2017). Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. International Journal of Hematology-Oncology and Stem Cell Research, 11(4), 319-327.
Phan, B. A. P., & Toth, P. P. (2014). Dyslipidemia in women: etiology and management. International Journal of Women's Health, 6, 185-194.
Poluzzi, E., Piccinni, C., Raschi, E., Rampa, A., Recanatini, M., & De Ponti, F. (2014). Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Current Medicinal Chemistry, 21(4), 417-436.
Ramdath, D. D., Padhi, E. M., Sarfaraz, S., Renwick, S., & Duncan, A. M. (2017). Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients, 9(4), 324.
Rodgers, J. L., Jones, J., Bolleddu, S. I., Vanthenapalli, S., Rodgers, L. E., Shah, K., Karia, K., & Panguluri, S. K. (2019). Cardiovascular risks associated with gender and aging. Journal of Cardiovascular Development and Disease, 6(2), 19.
Sargeant, P., Farndale, R. W., & Sage, S. O. (1993). The tyrosine kinase inhibitors methyl 2, 5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Letters, 315(3), 242-246.
Senoner, T., & Dichtl, W. (2019). Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients, 11(9), 2090.
Shailajan, S., Kumaria, S., Pednekar, S., Menon, S., Choudhury, H., & Matani, A. (2016). Estrogenic potential of Flemingia vestita Benth Tubers in ovariectomized rat model. Pharmacognosy Journal, 8(1), 44-49.
Sun, M. Y., Ye, Y., Xiao, L., Rahman, K., Xia, W., & Zhang, H. (2016). Daidzein: A review of pharmacological effects. African Journal of Traditional, Complementary and Alternative Medicines, 13(3), 117-132.
Tan, B. L., Norhaizan, M. E., Liew, W. P. P., & Sulaiman Rahman, H. (2018). Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Frontiers in Pharmacology, 9, 1162.
Terzic, M., Micic, J., Dotlic, J., Maricic, S., Mihailovic, T., & Knezevic, N. (2012). Impact of phytoestrogens on serum lipids in postmenopausal women. Geburtshilfe und Frauenheilkunde, 72(6), 527-531.
Thomas, J. (2020). Retrieved from https://www.healthline.com/health/heart-disease/statistics. Accessed April 2, 2021.
Upadhyay, R. K. (2015). Emerging risk biomarkers in cardiovascular diseases and disorders. Journal of Lipids, 2015, 971453.
Valdes, A., & Bajaj, T. (2021). Estrogen Therapy. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK54 1051/. Accessed April 3, 2021.
Weydert, C. J., & Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature Protocols, 5(1), 51-66.
Wu, N., Fu, K., Fu, Y. J., Zu, Y. G., Chang, F. R., Chen, Y. H., Liu, X. L., Kong, Y., Liu, W., et al. (2009). Antioxidant activities of extracts and main components of pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Molecules, 14(3), 1032-1043.
Yoon, G. A., & Park, S. (2014). Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutrition Research and Practice, 8(6), 618-624.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Amara Anwuchaepe Ajaghaku, Daniel Lotanna Ajaghaku, Felix Ahamefule Onyegbule, Ikechukwu Sonne Mbagwu, Festus Basden Chinedu Okoye
This work is licensed under a Creative Commons Attribution 4.0 International License.
The papers published in the International Journal of Plant Based Pharmaceuticals are licenced under Creative Commons Attribution 4.0 International Licence (CC BY).
Accepted 2023-08-13
Published 2023-08-20