Development of controlled delivery systems by nanoliposomes of Hypericum perforatum L. extracts


Abstract views: 532 / PDF downloads: 318

Authors

  • Özlem Erdal Altıntaş Afyonkarahisar Health Sciences University, Suhut Vocational School of Health Services, Medical Laboratory Techniques Program, 03200, Afyonkarahisar, Türkiye https://orcid.org/0000-0003-4680-1738
  • Sevim Feyza Erdoğmuş Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Department of Pharmaceutical Microbiology, 03200, Afyonkarahisar, Türkiye https://orcid.org/0000-0002-4319-7558

DOI:

https://doi.org/10.29228/ijpbp.20

Keywords:

Biological activity, Controlled release, Hypericum perforatum L., Liposomes

Abstract

Hypericum perforatum L. is a popular and widespread medicinal plant used in a wide range of therapy, including gastrointestinal diseases, heart diseases, and skin-related diseases. The rapid development of nanotechnology and its applications in pharmacology have enabled the controlled release of drugs and bioactive components. This study aimed to investigate liposomal formulation for controlled release enriched with methanol and ethanol extract of H. perforatum, which has antioxidant, antimicrobial, and proliferative effects. In this context, firstly, the biological activity (antimicrobial, antioxidant, and cell viability) of H. perforatum methanol (Hp-MeOH) and ethanol (Hp-EtOH) extracts obtained by ultrasonic extraction method was revealed. Hp-MeOH and Hp-EtOH extracts have a larger zone of inhibition against Enterococcus faecalis ATTC 51289 and Pseudomonas aeruginosa ATCC 11778, respectively than the positive control amikacin (30mg/ml). Hp-MeOH and Hp-EtOH extracts were found to have a high total antioxidant status and low total oxidant status and oxidative stress index value. Hp-MeOH and Hp-EtOH extracts have a scavenging capacity of DPPH radicals between 23-89% and 27-90%, respectively in the studied concentration range. In addition, the effect of Hp-MeOH and Hp-EtOH extracts on cell viability of dermal fibroblast cells was evaluated for 24, 48, and 72 hours and induction of proliferation of fibroblasts was observed. Highly stable liposomes were successfully developed which encapsulated 82.6 ± 3.63% and 89.8 ± 2.74% Hp-MeOH and Hp-EtOH extracts, respectively. Liposomal structures loaded with Hp-MeOH and Hp-EtOH extracts showed a more controlled and slower release than the free extract.

References

Ali, M., Abdel Motaal, A., Ahmed, M. A., Alsayari, A., & El-Gazayerly, O. N. (2018). An in vivo study of Hypericum perforatum in a niosomal topical drug delivery system. Drug Delivery, 25(1), 417-425.

Allaw, M., Manconi, M., Aroffu, M., Marongiu, F., Porceddu, M., Bacchetta, G., Usach, I., Rached, R. A., Rajha, H. N., et al. (2020). Extraction, characterization and incorporation of Hypericum scruglii extract in ad hoc formulated phospholipid vesicles designed for the treatment of skin diseases connected with oxidative stress. Pharmaceutics, 12(11), 1010.

Awouafack, M. D., McGaw, L. J., Gottfried, S., Mbouangouere, R., Tane, P., Spiteller, M., & Eloff, J. N. (2013). Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae). BMC Complementary and Alternative Medicine, 13, 289.

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200.

Brankiewicz, A., Trzos, S., Mrożek, M., Opydo, M., Szostak, E., Dziurka, M., Tuleja, M., Łoboda, A., & Pocheć, E. (2023). Cytotoxic and Antioxidant Activity of Hypericum perforatum L. Extracts against Human Melanoma Cells from Different Stages of Cancer Progression, Cultured under Normoxia and Hypoxia. Molecules, 28(3), 1509.

Bridi, H., Beckenkamp, A., Ccana‐Ccapatinta, G. V., de Loreto Bordignon, S. A., Buffon, A., & von Poser, G. L. (2017). Characterization of phloroglucinol‐enriched fractions of Brazilian Hypericum species and evaluation of their effect on human keratinocytes proliferation. Phytotherapy Research, 31(1), 62-68.

Chimshirova, R., Karsheva, M., Diankov, S., & Hinkov, I. (2019). Extraction of valuable compounds from Bulgarian St. John's wort (Hypericum perforatum L.). antioxidant capacity and total polyphenolic content. Journal of Chemical Technology & Metallurgy, 54(5), 952-961.

CLSI, C. a. L. S. I. (2002). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. 2nd ed. Document M27-A2: Wayne, PA: Clinical and Laboratory.

CLSI, C. a. L. S. I. (2012). Performance standards for antimicrobial standards institute susceptibility testing, 26 th ed. CLSI supplement M100S: Wayne, PA: Clinical and Laboratory.

CLSI, C. a. L. S. I. (2016). Performance standards for antimicrobial standards institute susceptibility testing, 26 th ed. CLSI supplement M100S: Wayne, PA: Clinical and Laboratory.

Conforti, F., Statti, G., Tundis, R., Bianchi, A., Agrimonti, C., Sacchetti, G., Andreotti, E., Menichini, F., & Poli, F. (2005). Comparative chemical composition and variability of biological activity of methanolic extracts from Hypericum perforatum L. Natural Product Research, 19(3), 295-303.

Dua, J., Rana, A., & Bhandari, A. (2012). Liposome: methods of preparation and applications. International Journal of Pharmaceutical Studies and Research, 3(2), 14-20.

Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37(2), 112-119.

Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103-1111.

Eroğlu-Özkan, E., Çelik, B. Ö., & Afife, M. (2019). Antimicrobial activities of five endemic Hypericum species from Anatolia compared with Hypericum perforatum. Journal of Research in Pharmacy, 23(1), 114-119.

Gamez-Meza, N., Noriega-Rodriguez, J., Medina-Juarez, L., Ortega-Garcia, J., Cazarez-Casanova, R., & Angulo-Guerrero, O. (1999). Antioxidant activity in soybean oil of extracts from Thompson grape bagasse. Journal of the American Oil Chemists' Society, 76, 1445-1447.

Gharib, R., Auezova, L., Charcosset, C., & Greige-Gerges, H. (2017). Drug-in-cyclodextrin-in-liposomes as a carrier system for volatile essential oil components: Application to anethole. Food Chemistry, 218, 365-371.

Gillet, A., Compère, P., Lecomte, F., Hubert, P., Ducat, E., Evrard, B., & Piel, G. (2011). Liposome surface charge influence on skin penetration behaviour. International Journal of Pharmaceutics, 411(1-2), 223-231.

Isidore, E., Karim, H., & Ioannou, I. (2021). Extraction of phenolic compounds and terpenes from Cannabis sativa L. by-products: From conventional to intensified processes. Antioxidants, 10(6), 942.

Khoshraftar, Z., Shamel, A., Safekordi, A. A., Ardjmand, M., & Zaefizadeh, M. (2020). Natural nanopesticides with origin of Plantago major seeds extract for Tribolium castaneum control. Journal of Nanostructure in Chemistry, 10, 255-264.

Kuete, V. (2010). Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Medica, 76(14), 1479-1491.

Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of cell viability by the MTT assay. Cold Spring Harbor Laboratory Press D, 2018(15), 464-471.

Kurt-Celep, İ., Celep, E., Akyüz, S., İnan, Y., Barak, T. H., Akaydın, G., Telci, D., & Yesilada, E. (2020). Hypericum olympicum L. recovers DNA damage and prevents MMP–9 activation induced by UVB in human dermal fibroblasts. Journal of Ethnopharmacology, 246, 112202.

Latiff, N. A., Ong, P. Y., Abd Rashid, S. N. A., Abdullah, L. C., Mohd Amin, N. A., & Fauzi, N. A. M. (2021). Enhancing recovery of bioactive compounds from Cosmos caudatus leaves via ultrasonic extraction. Scientific Reports, 11, 17297.

Luiz, H., Oliveira Pinho, J., & Gaspar, M. M. (2023). Advancing Medicine with Lipid-Based Nanosystems—The Successful Case of Liposomes. Biomedicines, 11(2), 435.

Maja, L., Željko, K., & Mateja, P. (2020). Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids, 165, 104984.

Michalak, M. (2022). Plant-derived antioxidants: Significance in skin health and the ageing process. International Journal of Molecular Sciences, 23(2), 585.

Mir, M. Y., Kamili, A. N., Hassan, Q. P., Rafi, S., Parray, J. A., & Jan, S. (2019). In vitro regeneration and free radical scavenging assay of Hypericum perforatum L. National Academy Science Letters, 42, 161-167.

Naziris, N., & Demetzos, C. (2022). Lipid nanoparticles as platforms for theranostic purposes: recent advances in the field. Journal of Nanotheranostics, 3(2), 86-101.

Nobakht, S. Z., Akaberi, M., Mohammadpour, A., Moghadam, A. T., & Emami, A. (2022). Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iranian Journal of Basic Medical Sciences, 25(9), 1045-1058.

Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., RamaKrishna, S., & Berto, F. (2020). Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants, 9(12), 1309.

Pehlivan, M., & Sevindik, M. (2018). Antioxidant and antimicrobial activities of Salvia multicaulis. Turkish Journal of Agriculture-Food Science and Technology, 6(5), 628-631.

Pisoschi, A. M., Pop, A., Cimpeanu, C., & Predoi, G. (2016). Antioxidant capacity determination in plants and plant-derived products: A review. Oxidative Medicine and Cellular Longevity, 2016, 9130976.

Pradeep, P., Manisha, S., Monica Amala Nayaki, J., Sivaraman, D., Selvaraj, R., & Seeni, S. (2019). Potential antioxidant and anti-inflammatory action of Hypericum hookerianum extracts in a liposome system evaluated with zebrafish embryos. Journal of Microencapsulation, 36(6), 513-522.

Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115-122.

Rahman, H. S., Othman, H. H., Hammadi, N. I., Yeap, S. K., Amin, K. M., Abdul Samad, N., & Alitheen, N. B. (2020). Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. International Journal of Nanomedicine, 15, 2439-2483.

Saraç, H., Demirbaş, A., Daştan, S. D., Ataş, M., Çevik, Ö., & Eruygur, N. (2019). Evaluation of nutrients and biological activities of Kenger (Gundellia tournefortii L.) seeds cultivated in Sivas province. Turkish Journal of Agriculture-Food Science and Technology, 7(sp2), 52-58.

Sekeroglu, N., Urlu, E., Kulak, M., Gezici, S., & Dang, R. (2017). Variation in total polyphenolic contents, DNA protective potential and antioxidant capacity from aqueous and ethanol extracts in different plant parts of Hypericum perforatum L. Indian Journal of Pharmaceutical Education and Research, 51(2S), S1-S7.

Sevindik, M., Akgul, H., Pehlivan, M., & Selamoglu, Z. (2017). Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresenius Environmental Bulletin, 26(7), 4757-4763.

Sharma, A., Sharma, S., Kumar, A., Kumar, V., & Sharma, A. K. (2022). Plant secondary metabolites: An introduction of their chemistry and biological significance with physicochemical aspect. In A. K. Sharma & A. Sharma (Eds.), Plant Secondary Metabolites: Physico-Chemical Properties and Therapeutic Applications (pp. 1-45): Springer, Singapore.

Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1-2), 200-213.

Süntar, I., Oyardı, O., Akkol, E. K., & Ozçelik, B. (2016). Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharmaceutical Biology, 54(6), 1065-1070.

Teixeira, T., Vale, R., Almeida, R., Ferreira, T., & Guimarães, L. (2017). Antioxidant potential and its correlation with the contents of phenolic compounds and flavonoids of methanolic extracts from different medicinal plants. Revista Virtual de Química, 9(4), 1546-1559.

Tripathy, S., & Srivastav, P. P. (2023). Encapsulation of Centella asiatica leaf extract in liposome: Study on structural stability, degradation kinetics and fate of bioactive compounds during storage. Food Chemistry Advances, 2, 100202.

Yilmaz, N. A., Yavaser, R., & Karagozler, A. A. (2021). Hypericum perforatum L.: A Potent antioxidant source for the treatment of oxidized dentin: An experimental in vitro study. Journal of Advanced Oral Research, 12(1), 57-65.

Downloads

Published

20.03.2023

How to Cite

Erdal Altıntaş, Özlem, & Erdoğmuş, S. F. (2023). Development of controlled delivery systems by nanoliposomes of Hypericum perforatum L. extracts. International Journal of Plant Based Pharmaceuticals, 3(1), 86–94. https://doi.org/10.29228/ijpbp.20

Issue

Section

Research Articles
Received 2023-02-28
Accepted 2023-03-17
Published 2023-03-20

Most read articles by the same author(s)